Drinking water sources are vulnerable to a broad range of contaminant threats. Recent U.S. legislation has focused on protecting public health from pathogens while also managing disinfection byproducts (DBPs) and organic contaminants. Chlorine is known to react with organic matter to form DBPs, thus alternative disinfection schemes are desirable. The goal of our research was to evaluate synergistic inactivation of E. coli with chlorine and sonication in a flow through system. Laboratory experiments were conducted to determine the impact of chlorine dose (0 to 1 mg/L), cavitation intensity (90 to 150 watts) and contact time (0 to 16 minutes) on inactivation. Tests were conducted with a probe system and a flow through cavitation device. Results showed that sonication alone was ineffective for the conditions tested. Sonication applied simultaneously with chlorine did not improve inactivation compared to each disinfectant alone.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1461 |
Date | 29 April 2008 |
Creators | Prokop, Todd Ronald |
Contributors | John A. Bergendahl, Committee Member, Jeanine D. Plummer, Advisor, |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0021 seconds