<p>Today’s electronics in aviation (avionics) are more complex than ever before. With higher requirements on safety and reliability and with new SoC (System on Chip) technology, the validation and verification of designs meet new challenges. In commercial and military aircraft there are many safety-critical systems that need to be reliable. The consequences of a failure of a safety-critical system onboard a civil or military aircraft are immeasurably more serious than a glitch or a bit-flip in a consumer appliance or Internet service delivery. If possible hazards are found early in the design process, a lot of work can be saved later on. Certain structures in the code are prone to produce glitchy logic and timing problems and should be avoided. This thesis will strengthen Saab Avitronics knowledge of adaptable rule checking tools for HDL, with a market analysis of the tools available. Moreover will it evaluate two of the most suitable tools and finally it will describe some of the design issues that exist when coding safety-critical systems. Finally it is concluded that the introduction of static rule checking tools will help the validator to find dangerous constructs in the code. However, it will not be possible to fully automate rule checking for safety-critical systems, because of the high requirements on reliability.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-16762 |
Date | January 2009 |
Creators | Lord, Mikael |
Publisher | Linköping University, Department of Electrical Engineering |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0019 seconds