Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) have been difficult to differentiate in clinical settings, as these two disorders are phenotypically similar and both exhibit atypical attention and executive functioning. Mischaracterizations between these two disorders can lead to inappropriate medication regimes, significant delays in special services, and personal distress to families and caregivers. There is evidence that ASD and ADHD are biologically different for attentional and executive functioning mechanisms, as only half of individuals with co-occurring ASD and ADHD respond to stimulant medication. Further, neurobehavioral work has supported these biological differences for ASD and ADHD, with both shared and distinct functional connectivity. In specific, two brain networks have been implicated in these disorders: the salience network (SN) and frontoparietal network (FPN). The SN is a network anchored by bilateral anterior insula and the dorsal anterior cingulate cortex and has been implicated in “bottom-up” attentional processes for both internal and external events. The FPN is anchored by lateral prefrontal cortex areas and the parietal lobe and plays a roll in “top-down” executive processes. Functional connectivity subgroups differentiated ASD from ADHD with between SN-FPN connectivity patterns, but not by within-SN or within-FPN connectivity patterns. Further, subgroup differences in ASD+ADHD comorbidity vs. ASD only were found for within-FPN connectivity. / Master of Science / Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) have been difficult to differentiate in clinical settings, as these two disorders are similar and both exhibit attention and executive functioning difficulties. ASD and ADHD have shared and distinct functional brain network connectivity related to attention and executive functioning. Two brain networks have been implicated in these disorders: the salience network (SN) and frontoparietal network (FPN). The SN is a network that has been implicated in “bottom-up” attentional processes for both internal and external events. The FPN plays a roll in “top-down” executive processes. This study found that functional connectivity patterns between the SN and FPN differentiated ASD from ADHD. Further, connectivity patterns in children with co-occurring ASD and ADHD were characterized by within-FPN connectivity.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/83967 |
Date | 18 April 2018 |
Creators | Antezana, Ligia |
Contributors | Psychology, Richey, John A., Kim-Spoon, Jungmeen, White, Susan W. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States, http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
Page generated in 0.0019 seconds