La conception d'applications scientifiques à base de couplage de code est une tâche complexe car elle demande de concilier une facilité de programmation et une obtention de haute performance. En outre, les ressources matérielles (supercalculateurs, grappes de calcul, grilles) permettant leur exécution forment un ensemble hétérogène en constante évolution. Les modèles à base de composants logiciels forment une piste prometteuse pour gérer ces deux sources de complexité car ils permettent d’exprimer les interactions entre les différents constituants d’une application tout en offrant des possibilités d'abstraction des ressources. Néanmoins, les modèles existants ne permettent pas d'exprimer de manière satisfaisante les applications constituées de motifs répliqués dynamiques et hiérarchiques. Ainsi, cette thèse vise à améliorer l'existant – et en particulier la plate-forme générique de simulation numérique SALOME – pour une classe d'applications très répandue : les applications à base de décomposition de domaine et la variante utilisant le raffinement de maillage adaptatif. Tout d'abord, nous avons proposé d’étendre le modèle de composition spatial et temporel de SALOME en ajoutant la possibilité de définir dynamiquement la cardinalité des composants. Cela demande en particulier de gérer les communications de groupes ainsi induites. La proposition a été implémentée dans SALOME et validée via une application de décomposition de domaine à base de couplage de plusieurs instances de Code_Aster. Ensuite, nous avons étudié la pertinence d'utiliser un modèle de composant supportant des connecteurs natifs (MPI, mémoire partagée, appel de méthode) pour permettre une composition plus fine des interactions entre composants. Les résultats d'expériences montrent que des performances équivalentes aux versions natives sont obtenues tout en permettant de manipuler facilement l'architecture de l'application. Enfin, nous avons étudié les extensions nécessaires aux modèles à composants (abstraction,hiérarchie, dynamicité) pour la conception d’applications de raffinement de maillage adaptatif. Les modèles de composants spatio-temporels les plus avancés permettent ainsi d'exprimer ce type d'application mais les performances sont limitées par leur mise en œuvre centralisée ainsi que par le manque de moyens efficaces pour modifier à la volée des assemblages de composants. / Designing scientific applications based on code coupling is a complex task. It requires both an easy programming process and high-performance. In addition, execution resources (supercomputers, computer clusters, grids) are heterogeneous and constantly evolving. Software components models offer a promising perspective to manage this double complexity because they can express interactions between the different parts of an application while providing abstraction of resources. However, existing models cannot accurately express the applications made of dynamic and hierarchical patterns. The aim of this thesis is to improve the existing models, and in particular the generic platform for numerical simulation SALOME, for a class of widespread applications : applications based on domain decomposition, and its dynamic variant using adaptive mesh refinement. Firstly, we proposed to extend the spatial and temporal composition model provided by SALOME, by adding the ability to dynamically set component cardinality. This requires in particular to manage group communications induced. The proposal has been implemented into SALOME and validated via a domain decomposition application based on coupling several instances of Code_Aster.Then, we have studied the relevance of using a component model supporting native connectors (MPI, shared memory, method invocation), in order to allow finer composition interactions between components.The experiment results show that performances obtained are equivalent to those of the native versions, while allowing to easily manipulate the application architecture. Finally, we studied the necessary component models extensions (abstraction, hierarchy, dynamicity) for designing adaptative mesh refinement applications. The most advanced spatio-temporal component models can express this type of application but performances are limited by their centralized implementation and by the lack of efficient ways of modifying component assembling at execution time.
Identifer | oai:union.ndltd.org:theses.fr/2012ENSL0758 |
Date | 05 November 2012 |
Creators | Pichon, Vincent |
Contributors | Lyon, École normale supérieure, Pérez, Christian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds