The physical properties of single crystals of samarium monosulfide exhibit a first order semiconductor-to-metal transition near 6.5 kbar. However, thin films of SmS show only a gradual change in their properties on applying pressure and this renders the technical utilization of the material difficult. Several mechanisms have been proposed as the cause of the smoothing of the transition. They include intrinsic stress, impurities, grain size, improper stoichiometry, and porosity, all of which can be traced to the physical vapor deposition techniques employed in preparing the films. In contrast, chemical vapor deposition was employed in this study because previous work had shown that it could minimize these detrimental modifications in thin films. A new CVD system was tested using a volatile organometallic as the samarium source and reacting it with H₂S. The deposited films contained considerable amounts of oxygen as evidenced by structure analysis, and the origin was traced to the samarium organometallic. The reaction of oxygen-free samarium tricyclopentadienyl with H₂S as well as chemical transport are suggested for deposition of stress-free SmS thin films in future work.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/187650 |
Date | January 1984 |
Creators | HILLMAN, PAUL DALLAS. |
Contributors | MacLeod, Angus, Gibbs, Hyatt |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0025 seconds