This project focuses on how to implement an Artificial Intelligence (AI) -agent in a Tactical Simulator (Tacsi). Tacsi is a simulator used by Saab AB, one thing that the simulator is used for is pilot training. In this work, Tacsi will be used to simulate air to air combat. The agent uses Reinforcement Learning (RL) to be able to explore and learn how the simulator behaves. This knowledge will then be exploited when the agent tries to beat a computer-controlled synthetic enemy. The result of this study may be used to produce better synthetic enemies for pilot training. The RL-algorithm used in this work is deep Q-Learning, a well-known algorithm in the field. The results of the work show that it is possible to implement an RL-agent in Tacsi which can learn from the environment and be able to defeat the enemy, in some scenarios. The result produced by the algorithm verified that a RL-Agent works within Tacsi at Saab AB. Although the performance of the agent in this work is not impressive, there is a great opportunity for further development of the agent as well as the working environment.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-166593 |
Date | January 2020 |
Creators | Lindberg, Jesper |
Publisher | Linköpings universitet, Statistik och maskininlärning |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds