Cette étude se propose d’explorer les potentialités des données de télédétection optique et radar libre d’accès pour l’évaluation et le suivi des écosystèmes forestiers tropicaux, secs ou humides. Différents sites tests situés dans ces écosystèmes forestiers tropicaux, ont été sélectionnés. Il s’agit : du parc national des Virunga en République Démocratique du Congo (RDC), de la réserve de biosphère de l’Oti-Keran-Mandourie (OKM) et de la réserve de faune de Togodo (RFT) au Togo, de la zone située autour du pont faisant la liaison entre la ville de Saint-Georges de l’Oyapock et la plaine du littorale de Kourou en Guyane française et de la province de la Monté Cristi en république Dominicaine. Différentes données ont été utilisés lors de cette étude : pour les images radar, des séries temporelles Sentinel-1, des mosaïques Alos-2 et, pour les images optiques, Sentinel-2 et Landsat-8. Des données exogènes comme les points GPS, modèles numériques de terrain et les cartes de référence. L’approche méthodologie utilisé est composée de prétraitement sur les images optiques et radar. Les approches spécifiques, variables selon le site d’étude, ont comporté : photo interprétation détaillée, la classification supervisée SVM, l’inventaire forestier et l’application des équations allométriques, une approche de détection des changements par décomposition en ondelettes, une de détection des changements automatiques par seuillage et la caractérisation de ces changements. Les principaux résultats sont les suivants : Site du PNVI : les cartes d’occupation du sol et les cartes binaires forêts, non-forêt de 1987, 1997, 2007 et 2017 sont réalisées sur le PNVI. Sur la période de 30 ans en utilisant les cartes binaires entre 1987 à 2017 le taux moyen annuel de déforestation est de 1,07%. Ce taux de déforestation élevé montre la pression croissante sur les ressources forestières dans le paysage des Virunga. Site de l’OKM et du RFT : une classification menée sur une combinaison d’images optiques et radar donne des performances légèrement meilleures que des classifications menées sur des images optiques et radar considérées séparément. Les cartes d’occupation du sol issues de ces classifications ont servis de base pour l’estimation de stocks de carbone à travers l’évaluation des ressources forestières. Sur le site de Saint-Georges de l’Oyapock, l’analyse temporelle menée à partir de décompositions en ondelettes, a permis de détecter trois grands types de changements dus à : la déforestation anthropique, les évolutions saisonnières et les évolutions agricoles. Sur le site de la province de Monté Cristi en République dominicaine, l’analyse conjointe d’images radar et optiques a permis de proposer une cartographie comportant 18 classes d’occupation du sol contrôlées sur le terrain avec une précision globale de plus de 90 %. Le suivi historique des forêts montre une régression de la couverture forestière. Parallèlement, nous observons une régression de la surface des mangroves entre 2015 et 2018.Cette étude a mis en évidence l’immense potentialité des données de télédétection optique et radar dans la caractérisation, la cartographie et le suivi des strates d’occupation des sols dans les écosystèmes tropicaux dans différentes régions du monde et en fonction des conditions saisonniers. Si chaque type de données de télédétection possède ces qualités et capacités discriminatoire, cette étude a montré que l’utilisation conjointe et combinée de deux types de données permet d’augmenté significativement la caractérisation et la discrimination des classes d’occupation des sols et ainsi augmente les chances de fiabilité des actions à mener / This study aims to explore the potential of optical remote sensing and free access radar data for the assessment and monitoring of tropical, dry or wet forest ecosystems. Different test sites located in these tropical forest ecosystems have been selected. These are: the Virunga National Park in the Democratic Republic of Congo (DRC), the Oti-Keran-Mandourie Biosphere Reserve (OKM) and Togodo Wildlife Reserve (RFT) in Togo, the area around the bridge linking the city of Saint-Georges de l'Oyapock and the plain of the Kourou coast in French Guiana and the province of Monté Cristi in the Dominican Republic. Different data were used in this study: for radar images, Sentinel-1 time series, Alos-2 mosaics and, for optical images, Sentinel-2 and Landsat-8. Exogenous data such as GPS points, digital terrain models and reference maps. The methodology approach used consists of pretreatment on optical and radar images. Specific approaches, varying by study site, included: photo detailed interpretation, supervised SVM classification, forest inventory and application of allometric equations, a wavelet decomposition detection approach, a detection approach automatic changes by thresholding and the characterization of these changes. The main results are:PNVI site: land cover maps and forest, non-forest binary maps of 1987, 1997, 2007 and 2017 are produced on the PNVI. Over the 30-year period using the binary maps between 1987 and 2017 the average annual rate of deforestation is 1.07%. This high deforestation rate shows the increasing pressure on forest resources in the Virunga landscape. OKM and RFT site: a classification carried out on a combination of optical and radar images gives slightly better performances than classifications carried out on optical and radar images considered separately. The land cover maps from these classifications were used as a basis for estimating carbon stocks through forest resource assessment. At the Saint-Georges de l'Oyapock site, temporal analysis using wavelet decompositions revealed three main types of changes due to anthropogenic deforestation, seasonal changes and agricultural changes. On the site of the Monté Cristi province in the Dominican Republic, the joint analysis of radar and optical images made it possible to propose a cartography comprising 18 field-controlled land cover classes with an overall accuracy of more than 90%. Historical forest monitoring shows a decline in forest cover. At the same time, we observe a regression of the surface of mangroves between 2015 and 2018.This study has highlighted the immense potential of optical and radar remote sensing data in the characterization, mapping and monitoring of land use layers in tropical ecosystems in different regions of the world and according to seasonal conditions. While each type of remote sensing data has these discriminatory qualities and capabilities, this study has shown that the joint and combined use of two types of data significantly increases the characterization and discrimination of land-use classes and thus increases the chances of reliability of the actions to be carried out
Identifer | oai:union.ndltd.org:theses.fr/2018PESC2181 |
Date | 14 December 2018 |
Creators | Kemavo, Anoumou |
Contributors | Paris Est, Rudant, Jean-Paul |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds