Der erste Teil der Arbeit beschäftigt sich mit dem Einfluss von Ionenströmen auf die Aktionspotentialgenerierung. Kapitel 1 zeigt den Einfluss der Chloridpermeabilität auf die Response und die Volumenregulation bei äußerer Erregung. In Kapitel 2 zeigen wir, dass passiven Leckströmen, für deren Kompensation neuronale Zellen einen enormen Energieaufwand betreiben, das Membranpotential gegen Fluktuationen in anderen funktionalen Ionenströmen stabilisieren und damit ein gesichertes Verarbeiten und Weiterleiten von Informationen in Form von Aktionspotentialen erst ermöglichen. Der zweite Teil beschäftigt sich mit dem Energiemetabolismus neuronaler Zellen. In Kapitel 3 bestimmen wir den Sauerstoffverbrauch in Hirnschnitten bei verschiedenen Aktivitätszuständen und zeigen, dass das Auftreten einer hämodynamische Response für hohe Aktivitätsformen notwendig ist. Wir schließen daraus, dass das vaskuläre System nur so weit angelegt ist, als es zur Vorsorgung bei hoher energetischer Belastung erforderlich ist. In Kapitel 4 verwenden wir ein von uns entwickeltes Modell des neuronalen Energiestoffwechsels um zu untersuchen, wie die Charakteristiken von NAD(P)H-Fluoreszenzkurven, auf die zelluläre glykolytische und respiratorische Aktivität zurückzuführen sind. Außerdem zeigen wir, wie die Fähigkeit neuronaler Zellen, Lactat alternativ zur Glukose als energielieferndes Substrat zu benutzen, von ihrer glykolytischen und oxidativen Kapazität abhängt. Da in viele neurodegenerativen Erkrankungen eine reduzierte Aktivität des Enzymkomplexes α-ketogluteratedehydrogenase (KGDHC) auftritt, haben wir in Kapitel 5 den Einfluss einer gestörten KGDHC Aktivität auf den neuronalen Energiestoffwechsel untersucht. Wir zeigen, wie eine reduzierte KGDHC Aktivität neuronale Leistungsfähigkeit kompromittiert. Außerdem identifizieren wir mögliche Bildungsstellen für reaktive Sauerstoffspezies (ROS) der Atmungskette und zeigen, dass eine Reduktion der KGDHC Aktivität die Bilddung von ROS vermindert. / The first part of this work deals with the influence of ion currents on the generation of action potentials (APs). Chapter 1 shows the influence of chloride on the fidelity of APs and cellular volume regulation. In chapter 2 we show that sufficiently large leak currents function as important stabilizers of the membrane potential and thus are required to allow robust AP firing. The second part deals with the energy metabolism of neuronal cells. In chapter 3 we determine the relative oxygen consumption rate of hippocampal brain slices under different activity states. We show that a hemodynamic response is necessary for sufficient oxygen supply during highly active states. We conclude that the effort spent on the structure of the vascular system is economized to just match the neuronal energy demand. In chapter 4 we use a model of the neuronal energy metabolism developed by us to show how the characteristics of NAD(P)H fluorescence curves relies on the cellular glycolytic and respirational activity. In addition we show how the ability of neuronal cells to use lactate instead of glucose as energy delivering substrate depends on their respective glycolytic and respiratory activity. Since a reduced activity of brain α-ketoglutarate dehydrogenase complex (KGDHC) occurs in a number of neurodegenerative diseases, we examined the influence of a reduced KGDHC activity on the neuronal energy metabolism and show how it leads to a compromised neuronal functionality. In addition we developed a detailed kinetic model of the respiratory chain (RC) and identified the possible sites for production of reactive oxygen species (ROS) by the RC. We show that a reduced KGDHC activity should decrease ROS production by the RC.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17320 |
Date | 18 December 2012 |
Creators | Berndt, Nikolaus |
Contributors | Holzhütter,, Kann,, Klipp, |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | German |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung, http://creativecommons.org/licenses/by-nc/3.0/de/ |
Page generated in 0.0027 seconds