Return to search

Flexible Computing with Virtual Machines

This thesis is predicated upon a vision of the future of computing with a separation of functionality between core and edges, very
similar to that governing the Internet itself. In this vision, the core of our computing infrastructure is made up of vast server farms with an abundance of storage and processing cycles. Centralization of
computation in these farms, coupled with high-speed wired or wireless connectivity, allows for pervasive access to a highly-available and well-maintained repository for data, configurations, and applications. Computation in the edges is concerned with provisioning application state and user data to rich clients, notably mobile devices equipped with powerful displays and graphics processors.

We define flexible computing as systems support for applications that dynamically leverage the resources available in the core
infrastructure, or cloud. The work in this thesis focuses on two instances of flexible computing that are crucial to the
realization of the aforementioned vision. Location flexibility aims to, transparently and seamlessly, migrate applications between
the edges and the core based on user demand. This enables performing the interactive tasks on rich edge clients and the computational tasks on powerful core servers. Scale flexibility is the ability of
applications executing in cloud environments, such as parallel jobs or
clustered servers, to swiftly grow and shrink their footprint according to execution demands.

This thesis shows how we can use system virtualization to implement systems that provide scale and location flexibility. To that effect we build and evaluate two system prototypes: Snowbird and SnowFlock. We present techniques for manipulating virtual machine state that turn running software into a malleable entity which is easily manageable, is decoupled from the underlying hardware, and is capable of dynamic relocation and scaling. This thesis demonstrates that virtualization technology is a powerful and suitable tool to
enable solutions for location and scale flexibility.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/26540
Date30 March 2011
CreatorsLagar Cavilla, Horacio Andres
Contributorsde Lara, Eyal
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds