<p>Advances in network technologies and computing resources have led to the deployment of large scale computational systems, such as those following Grid or Cloud architectures. The scheduling problem is a significant issue in these distributed computing environments, where a scheduling algorithm should consider multiple objectives and performance metrics. Moreover, heterogeneity is increasing at both the application and resource levels. The heterogeneity in these systems can have a huge impact on performance in terms of metrics such as average completion time. However, traditional Grid and Cloud scheduling algorithms neglect heterogeneity in their scheduling decisions. This PhD dissertation studies the scheduling challenges in Computational Grid, Data Grid, and Cloud computing systems, and introduces new scheduling algorithms for each of these systems.</p> <p>The main issue in Grid scheduling is the wide distribution of resources. As a result, gathering full state information can add huge overhead to the scheduler. This thesis introduces a Computational Grid scheduling algorithm which simultaneously addresses minimizing completion times (by considering system heterogeneity), while requiring zero dynamic state information. Simulation results show the promising performance of this algorithm, and its robustness with respect to errors in parameter estimates.</p> <p>In the case of Data Grid schedulers, an efficient scheduling decision should select a combination of resources for a task that simultaneously mitigates the computation and the communication costs. Therefore, these schedulers need to consider a large search space to find an appropriate combination. This thesis introduces a new Data Grid scheduling algorithm, which dynamically makes replication and scheduling decisions. The proposed algorithm reduces the search space, decreases the required state information, and improves the performance by considering the system heterogeneity. Simulation results illustrate the promising performance of the introduced algorithm.</p> <p>Cloud computing can be considered as a next generation of Grid computing. One of the main challenges in Cloud systems is the enormous expansion of data in different applications. The MapReduce programming model and Hadoop framework were designed as a solution for executing large scale data-intensive applications. A large number of (heterogeneous) users, using the same Hadoop cluster, can result in tensions between the various performance metrics by which such systems are measured. This research introduces and implements a Hadoop scheduling system, which uses system information such as estimated job arrival rates and mean job execution times to make scheduling decisions. The proposed scheduling system, named COSHH (Classification and Optimization based Scheduler for Heterogeneous Hadoop systems), considers heterogeneity at both the application and cluster levels. The main objective of COSHH is to improve the average completion time of jobs. However, as it is concerned with other key Hadoop performance metrics, it also achieves competitive performance under minimum share satisfaction, fairness and locality metrics, with respect to other well-known Hadoop schedulers. The proposed scheduler can be efficiently applied in heterogeneous clusters, in contrast to most Hadoop schedulers, which assume homogeneous clusters.</p> <p>A Hadoop system can be described based on three factors: cluster, workload, and user. Each factor is either heterogeneous or homogeneous, which reflects the heterogeneity level of the Hadoop system. This PhD research studies the effect of heterogeneity in each of these factors on the performance of Hadoop schedulers. Three schedulers which consider different levels of Hadoop heterogeneity are used for the analysis: FIFO, Fair sharing, and COSHH. Performance issues are introduced for Hadoop schedulers, and experiments are provided to evaluate these issues. The reported results suggest guidelines for selecting an appropriate scheduler for different Hadoop systems. The focus of these guidelines is on systems which do not have significant fluctuations in the number of resources or jobs.</p> <p>There is a considerable challenge in Hadoop to schedule tasks and resources in a scalable manner. Moreover, the potential heterogeneous nature of deployed Hadoop systems tends to increase this challenge. This thesis analyzes the performance of widely used Hadoop schedulers including FIFO and Fair sharing and compares them with the COSHH scheduler. Based on the discussed insights, a hybrid solution is introduced, which selects appropriate scheduling algorithms for scalable and heterogeneous Hadoop systems with respect to the number of incoming jobs and available resources. The proposed hybrid scheduler considers the guidelines provided for heterogeneous Hadoop systems in the case that the number of jobs and resources change considerably.</p> <p>To improve the performance of high priority users, Hadoop guarantees minimum numbers of resource shares for these users at each point in time. This research compares different scheduling algorithms based on minimum share consideration and under different heterogeneous and homogeneous environments. For this evaluation, a real Hadoop system is developed and evaluated using Facebook workloads. Based on the experiments performed, a reliable scheduling algorithm is suggested which can work efficiently in different environments.</p> / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/13203 |
Date | 10 1900 |
Creators | Rasooli, Oskooei Aysan |
Contributors | Down, Douglas G., Alan Wassyng, Franek Frantisek, Computing and Software |
Source Sets | McMaster University |
Detected Language | English |
Type | dissertation |
Page generated in 0.0103 seconds