The present thesis is focused on the development and application of narrow scanned high energy photon beam for radiation therapy. The introduction of physically and biologically optimized intensity modulated radiation therapy (IMRT) requires a flexible and accurate dose delivery method to maximize the treatment outcome. Narrow scanned photon beams is a fast option for IMRT since it is not dependent on mechanically moving heavy collimator leafs and largely independent of the complexity of the desired dose distribution. Scanned photon beams can be produced by scanning an electron beam of low emittance, incident on a thin bremsstrahlung target of low atomic number. The large fraction of high energy electrons that are transmitted through the target has to be removed by a strong purging magnet. In the thesis a strong purging magnet, coupled with a magnetic scanning magnet, is presented for an intrinsic electron energy of 50 - 75 MeV and a source to isocenter distance of 75 cm. The available scan area at isocenter can be as large as 43 x 40 cm2 for an incident electron energy of 50 MeV and 28 x 40 cm2 at 75 MeV. By modifying the existing treatment head of the racetrack microtron MM50, it was possible to experimentally produce relevant dose distributions with interesting properties from 50 MV scanned narrow photon beams while deflecting the transmitted electrons onto a simplified electron stopper. The deflection of the transmitted electrons was studied both experimentally and by the Monte Carlo method. With high energy photons, treatment verification is possible through PET-CT imaging of the positron annihilations induced by photonuclear reactions in the patient. Narrow scanned high energy photon beams is the ideal beam quality since the activation efficiency and the effective photon energy will be more uniform than the filtered photon beam from a full range bremsstrahlung target. The induced 11C activity 50 MV by scanned narrow photon beams was measured using PET-CT imaging and compared with Monte Carlo simulations. The combination of fast flexible dose delivery with treatment verification using PET-CT imaging makes narrow high energy scanned photon beams a very interesting treatment modality for biologically optimized adaptive radiation therapy. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Submitted.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-45809 |
Date | January 2010 |
Creators | Andreassen, Björn |
Publisher | Stockholms universitet, Fysikum, Stockholm : Department of Physics, Stockholm University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds