Return to search

The Role of Interstitials and Surface Defects on Oxidation and Reduction Reactions on Titania

This thesis focuses on understanding the influence of defect sites in titanium dioxide that drive many types of thermal and photochemical reactions. Two of the most common defects in vacuum are titanium interstitials and oxygen vacancies. Molecular oxygen fills oxygen vacancies and creates oxygen adatoms. We broadly investigate reduction and oxidation reactions of oxygenates driven by titanium interstitials and oxygen adatoms. First, we focus on the thermal chemistry of oxygen adatoms with butyrophenone and find that it reacts with the adatoms to form a strongly bound complex. The large difference in mobility between complexed and uncomplexed butyrophenone, and the corrugated nature of the \(TiO_2(110)\) surface plane, allows a confined one-dimensional gas to persist, which is characterized by scanning tunneling microscopy (STM). Next, we focus on the reductive coupling of benzaldehyde to stilbene that is driven by titanium interstitials. The diolate intermediate of the reaction is identified by STM and the thermodynamic preference of molecular oxygen to interact with titanium interstitials is exploited to selectively reverse the benzaldehyde diolate intermediates. Additionally, we investigate the photo-oxidative coupling of methanol to methyl formate, the photo-oxidation of butyrophenone and the photo-stability of benzoate. Finally, we identify a water splitting mechanism on reduced titania that creates oxygen adatoms. We demonstrate that the photo-generated oxygen adatoms thermally react with titanium interstitials to make TiOx islands and drive the photo-oxidation of formaldehyde and butyrophenone. Methods used include temperature programmed reaction spectroscopy, STM, and density functional theory. / Chemistry and Chemical Biology

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/10880848
Date07 June 2014
CreatorsJensen, Stephen C
ContributorsFriend, Cynthia M.
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0027 seconds