Return to search

STM probe on the surface electronic states of spin-orbit coupled materials

Thesis advisor: Vidya Madhavan / Spin-orbit coupling (SOC) is the interaction of an electron's intrinsic angular momentum (spin) with its orbital momentum. The strength of this interaction is proportional to Z<super>4</super> where Z is the atomic number, so generally it is stronger in atoms with higher atomic number, such as bismuth (Z=83) and iridium (Z=77). In materials composed of such heavy elements, the prominent SOC can be sufficient to modify the band structure of the system and lead to distinct phase of matter. In recent years, SOC has been demonstrated to play a critical role in determining the unusual properties of a variety of compounds. SOC associated materials with exotic electronic states have also provided a fertile platform for studying emergent phenomena as well as new physics. As a consequence, the research on these interesting materials with any insight into understanding the microscopic origin of their unique properties and complex phases is of great importance. In this context, we implement scanning tunneling microscopy (STM) and spectroscopy (STS) to explore the surface states (SS) of the two major categories of SOC involved materials, Bi-based topological insulators (TI) and Ir-based transition metal oxides (TMO). As a powerful tool in surface science which has achieved great success in wide variety of material fields, STM/STS is ideal to study the local density of states of the subject material with nanometer length scales and is able to offer detailed information about the surface electronic structure. In the first part of this thesis, we report on the electronic band structures of three-dimensional TIs Bi<sub>2</sub>Te<sub>3</sub> and Bi<sub>2</sub>Se<sub>3</sub>. Topological insulators are distinct quantum states of matter that have been intensely studied nowadays. Although they behave like ordinary insulators in showing fully gapped bulk bands, they host a topologically protected surface state consisting of two-dimensional massless Dirac fermions which exhibits metallic behavior. Indeed, this unique gapless surface state is a manifestation of the non-trivial topology of the bulk bands, which is recognized to own its existence to the strong SOC. In chapter 3, we utilize quasiparticle interference (QPI) approach to track the Dirac surface states on Bi<sub>2</sub>Te<sub>3</sub> up to ~800 meV above the Dirac point. We discover a novel interference pattern at high energies, which probably originates from the impurity-induced spin-orbit scattering in this system that has not been experimentally detected to date. In chapter 4, we discuss the topological SS evolution in (Bi<sub>1-x</sub>In<sub>x</sub>)<sub>2</sub>Se<sub>3</sub> series, by applying Landau quantization approach to extract the band dispersions on the surface for samples with different indium content. We propose that a topological phase transition may occur in this system when x reaches around 5%, with the experimental signature indicating a possible formation of gapped Dirac cone for the surface state at this doping. In the second part of this thesis, we focus on investigating the electronic structure of the bilayer strontium iridate Sr<sub>3</sub>Ir<sub>2</sub>O<sub>7</sub>. The correlated iridate compounds belong to another domain of SOC materials, where the electronic interaction is involved as well. Specifically, the unexpected Mott insulating state in 5<italic>d</italic>-TMO Sr<sub>2</sub>IrO<sub>4</sub> and Sr<sub>3</sub>Ir<sub>2</sub>O<sub>7</sub> has been suggested originate from the cooperative interplay between the electronic correlations with the comparable SOC, and the latter is even considered as the driving force for the extraordinary ground state in these materials. In chapter 6, we carried out a comprehensive examination of the electronic phase transition from insulating to metallic in Sr<sub>3</sub>Ir<sub>2</sub>O<sub>7</sub> induced by chemical doping. We observe the subatomic feature close to the insulator-to-metal transition in response with doping different carriers, and provide detailed studies about the local effect of dopants at particular sites on the electronic properties of the system. Additionally, the basic experimental techniques are briefly described in chapter 1, and some background information of the subject materials are reviewed in chapter 2 and chapter 5, respectively. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_103564
Date January 2014
CreatorsZhou, Wenwen
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.4363 seconds