Lung cancer is the most commonly diagnosed cancer in the world and its finding is mainly incidental. New technologies and more specifically artificial intelligence has lately acquired big interest in the medical field as it can automate or bring new information to the medical staff. Many research have been done on the detection or classification of lung cancer. These works are done on local region of interest but only a few of them have been done looking at a full CT-scan. The aim of this thesis was to assess lung damages from CT images using new machine learning methods. First, single predictors had been learned by a 3D resnet architecture: cancer, emphysema, and opacities. Emphysema was learned by the network reaching an AUC of 0.79 whereas cancer and opacity predictions were not really better than chance AUC = 0.61 and AUC = 0.61. Secondly, a multi-task network was used to predict the factors altogether. A training with no prior knowledge and a transfer learning approach using self-supervision were compared. The transfer learning approach showed similar results in the multi-task approach for emphysema with AUC=0.78 vs 0.60 without pre-training and opacities with an AUC=0.61. Moreover using the pre-training approach enabled the network to reach the same performance as each of single factor predictor but with only one multi-task network which saves a lot of computational time. Finally a risk score can be derived from the training to use this information in a clinical context.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-223621 |
Date | January 2018 |
Creators | Chometon, Quentin |
Publisher | KTH, Skolan för kemi, bioteknologi och hälsa (CBH) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2018:15 |
Page generated in 0.0019 seconds