Waveguides in Euclidian space are piecewise path connected subsets of R^n that can be written as the union of a compact domain with boundary and their cylindrical ends. The compact and non-compact parts share a common boundary. This boundary is assumed to be Lipschitz, piecewise smooth and piecewise path connected. The ends can be thought of as the cartesian product of the boundary with the positive real half-line. A notable feature of Euclidian waveguides is that the scattering matrix admits a meromorphic continuation to a certain Riemann surface with a countably infinite number of leaves [2], which we will describe in detail and deal with. In order to construct this meromorphic continuation, one usually first constructs a meromorphic continuation of the resolvent for the Laplace operator. In order to do this, we will use a well known glueing construction (see for example [5]), which we adapt to waveguides. The construction makes use of the meromorphic Fredholm theorem and the fact that the resolvent for the Neumann Laplace operator on the ends of the waveguide can be easily computed as an integral kernel. The resolvent can then be used to construct generalised eigenfunctions and, from them, the scattering matrix. Being in possession of the scattering matrix allows us to calculate resonances; poles of the scattering matrix. We are able to do this using a combination of numerical contour integration and Newton s method.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:689511 |
Date | January 2016 |
Creators | Roddick, Greg |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/21762 |
Page generated in 0.0015 seconds