Return to search

A Bluetooth Scatternet Formation Mechanism Based on Traffic Distribution in an Infrastructure Network

<p> Wireless communication has been thriving in recent years. Developments in the hardware and software industries enable more and more devices to be embedded in wireless
communication modules. All kinds of interesting applications based on wireless connections
are emerging, demanding simple and efficient ways to inter-connect different devices. Bluetooth is an industry standard initially proposed by Ericsson, IBM, Microsoft and some other leading IT companies to meet this growing demand. Initially, it intended to provide universal low cost, low power, and low complexity wireless interface to various devices. Furthermore, it also proposed to provide the possibility of interconnecting a number of mobile devices to form a network. However, the details of network formation and operation have not yet been regulated. In this work, we will investigate Bluetooth enabled network formation issues (especially when the traffic patterns on the network are well known).</p> <p> In this thesis, we use a small indoor area network model with a wired infrastructure network installed in the wall. A number of mobiles are distributed in the area and require inter-connectivity with each other and/or the outside world through multiple gateways. Unbalanced traffic in the network may result in hotspots leading to poor network throughput. Therefore, a centralized network formation algorithm is needed for Bluetooth networks to solve this problem.</p> <p> This thesis proposes novel Network Formation based on a Traffic Distribution (NFTD) mechanism. This centralized mechanism co-ordinates the behavior of mobiles and is implemented on gateways (also called access points). It forms the network topology according to the traffic distribution so that the path length of hotspot flows can be limited in order to maximize the network capacity. Last but not least, infrastructure networks provide free high-speed links for mobiles to further increase network capacity. The proposed mechanism is a promising mechanism as supported by simulation results.</p> / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21852
Date11 1900
CreatorsAi, Ping
ContributorsTodd, Terence D., Electrical and Computer Engineering
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0067 seconds