Revisiting a crime scene is a vital part of investigating a crime. When physically visiting a crime scene there is however always a risk of contaminating the scene, and when working on a cold case, chances are that the physical crime has been altered. This thesis aims to explore what tools a criminal investigator would need to investigate a crime in a virtual environment and if a virtual reconstruction of a crime scene can be used to aid investigators when solving crimes. To explore these questions, an application has been developed in Unreal Engine that uses virtual reality (VR) to investigate a scene, reconstructed from data that has been obtained through laser scanning. The result is an application where the user is located in the court of Stockholm city, which was scanned with a laser scanner by NFC in conjunction with the terror attack on Drottninggatan in April 2017. The user can choose between a set of tools, e.g. a measuring tool and to place certain objects in the scene, in order to draw conclusions of what has happened. User tests with criminal investigators show that this type of application might be of use in some way for the Swedish police. It is however not clear how or when this would be possible which can be expected since this is a new type of application that has not been used by the police before.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-153847 |
Date | January 2018 |
Creators | Komulainen, Oscar, Lögdlund, Måns |
Publisher | Linköpings universitet, Medie- och Informationsteknik, Linköpings universitet, Tekniska fakulteten, Linköpings universitet, Medie- och Informationsteknik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds