Optical three dimensional (3D) mapping routines are used in inspection robots to detect faults by creating 3D reconstructions of environments. To detect surface faults, sub millimeter depth resolution is required to determine minute differences caused by coating loss and pitting. Sensors that can detect these small depth differences cannot quickly create contextual maps of large environments.
To solve the 3D mapping problem, a sensor fused approach is proposed that can gather contextual information about large environments with one depth sensor and a SLAM routine; while local surface defects can be measured with an actuated optical profilometer. The depth sensor uses a modified Kinect Fusion to create a contextual map of the environment. A custom actuated optical profilometer is created and then calibrated. The two systems are then registered to each other to place local surface scans from the profilometer into a scene context created by Kinect Fusion.
The resulting system can create a contextual map of large scale features (0.4 m) with less than 10% error while the optical profilometer can create surface reconstructions with sub millimeter resolution. The combination of the two allows for the detection and quantification of surface faults with the profilometer placed in a contextual reconstruction. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/47453 |
Date | 17 April 2014 |
Creators | Moodie, Daniel Thien-An |
Contributors | Mechanical Engineering, Wicks, Alfred L., Bird, John P., Meehan, Kathleen |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0018 seconds