Return to search

Real-Time Services in Packet-Switched Networks for Embedded Applications

Embedded applications have become more and more complex, increasing the demands on the communication network. For reasons such as safety and usability, there are real-time constraints that must be met. Also, to offer high performance, network protocols should offer efficient user services aimed at specific types of communication. At the same time, it is desirable to design and implement embedded networks with reduced cost and development time, which means using available hardware for standard networks. To that end, there is a trend towards using switched Ethernet for embedded systems because of its hight bit rate and low cost. Unfortunately, since switched Ethernet is not specifically designed for embedded systems, it has several limitations such as poor support for QoS because of FCFS queuing policy and high protocol overhead. This thesis contributes towards fulfilling these requirements by developing (i) real-time analytical frameworks for providing QoS guarantees in packet-switched networks and (II) packet-merging techniques to reduce the protocol overhead. We have developed two real-time analytical frameworks for networks with FCFS queuing in the switches, one for FCFS queuing in the source nodes and one for EDF queuing in the source nodes. The correctness and tightness of the real-time analytical frameworks for different network components in a singel-switch neetwork are given by strict theoretical proofs, and the performance of our end-to-end analyses is evaluated by simulations. In conjunction with this, we have compared our results to Network Calculus (NC), a commonly used analytical scheme for FCFS queuing. Our comparison study shows that our anlysis is more accurate than NC for singel-switch networks. To reduce the protocol overhead, we have proposed two active switched Ethernet approaches, one for real-time many-to-many communication and the other for the real-time short message traffic that is often present in embedded applications. A significant improvement in performance achieved by using our proposed active networks is demonstrated. Although our approaches are exemplified using switched Ethernet, the general approaches are not limited to switched Ethernet networks but can easily be moified to other similar packet-switched networks.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-1984
Date January 2007
CreatorsFan, Xing
PublisherHögskolan i Halmstad, Centrum för forskning om inbyggda system (CERES), Gothenburg : Chalmers university of technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDoktorsavhandlingar vid Chalmers tekniska högskola. Ny serie, 0346-718X ; 2611

Page generated in 0.0026 seconds