Return to search

Nitrogen-enriched hierarchically porous carbon materials fabricated by graphene aerogel templated Schiff-base chemistry for high performance electrochemical capacitors

This article presents a facile and effective approach for synthesizing three-dimensional (3D) graphenecoupled Schiff-base hierarchically porous polymers (GS-HPPs). The method involves the polymerization of melamine and 1,4-phthalaldehyde, yielding Schiff-base porous polymers on the interconnected macroporous frameworks of 3D graphene aerogels. The as-synthesized GS-HPPs possess hierarchically porous structures containing macro-/meso-/micropores, along with large specific surface areas up to 776 m² g⁻¹ and high nitrogen contents up to 36.8 wt%. Consequently, 3D nitrogen-enriched hierarchically porous carbon (N-HPC) materials with macro-/meso-/micropores were obtained by the pyrolysis of the GS-HPPs at a high temperature of
800 °C under a nitrogen atmosphere. With a hierarchically porous structure, good thermal stability and a high nitrogen-doping content up to 7.2 wt%, the N-HPC samples show a high specific capacitance of 335 F g⁻¹ at 0.1 A g⁻¹ in 6 M KOH, a good capacitance retention with increasing current density, and an outstanding cycling stability. The superior electrochemical performance means that the N-HPC materials have great potential as electrode materials for supercapacitors.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36425
Date16 December 2019
CreatorsYang, Xiangwen, Zhuang, Xiaodong, Huang, Yinjuan, Jiang, Jianzhong, Tian, Hao, Wu, Dongqing, Zhang, Fan, Mai, Yiyong, Feng, Xinliang
PublisherRoyal Society of Chemistry
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1759-9962, 10.1039/c4py01408a

Page generated in 0.0023 seconds