Nitrogen is an essential macronutrient for plants and nitrogen fertilizers are indispensable for modern agriculture. Unfortunately, we know too little about how plants regulate their use of soil nitrogen, to maximize fertilizers-N use by crops and pastures. This project took a dual approach, involving forward and reverse genetics, to identify N-regulators in plants, which may prove useful in the future to improve nitrogen-use efficiency in agriculture.
To identify nitrogen-regulated transcription factor genes in Arabidopsis that may control N-use efficiency we developed a unique resource for qRT-PCR measurements on all Arabidpsis transcription factor genes. Using closely spaced, gene-specific primer pairs and SYBR® Green to monitor amplification of double-stranded DNA, transcript levels of 83% of all target genes could be measured in roots or shoots of young Arabidopsis wild-type plants. Only 4% of reactions produced non-specific PCR products, and 13% of TF transcripts were undetectable in these organs. Measurements of transcript abundance were quantitative over six orders of magnitude, with a detection limit equivalent to one transcript molecule in 1000 cells. Transcript levels for different TF genes ranged between 0.001-100 copies per cell. Real-time RT-PCR revealed 26 root-specific and 39 shoot-specific TF genes, most of which have not been identified as organ-specific previously.<br><br>
An enlarged and improved version of the TF qRT-PCR platform contains now primer pairs for 2256 Arabidopsis TF genes, representing 53 gene families and sub-families arrayed on six 384-well plates. Set-up of real-time PCR reactions is now fully robotized. One researcher is able to measure expression of all 2256 TF genes in a single biological sample in a just one working day.
The Arabidopsis qRT-PCT platform was successfully used to identify 37 TF genes which transcriptionaly responded at the transcriptional level to N-deprivation or to nitrate per se. Most of these genes have not been characterized previously. Further selection of TF genes based on the responses of selected candidates to other macronutrients and abiotic stresses allowed to distinguish between TFs regulated (i) specifically by nitrogen (29 genes) (ii) regulated by general macronutrient or by salt and osmotic stress (6 genes), and (iii) responding to all major macronutrients and to abiotic stresses. Most of the N-regulated TF genes were also regulated by carbon. Further characterization of sixteen selected TF genes, revealed: (i) lack of transcriptional response to organic nitrogen, (ii) two major types of kinetics of induction by nitrate, (iii) specific responses for the majority of the genes to nitrate but not downstream products of nitrate assimilation. All sixteen TF genes were cloned into binary vectors for constitutive and ethanol inducible over expression, and the first generation of transgenic plants were obtained for almost all of them. Some of the plants constitutively over expressing TF genes under control of the 35S promoter revealed visible phenotypes in T1 generation. Homozygous T-DNA knock out lines were also obtained for many of the candidate TF genes. So far, one knock out line revealed a visible phenotype: retardation of flowering time.<br><br>
A forward genetic approach using an Arabidopsis ATNRT2.1 promoter : Luciferase reporter line, resulted in identification of eleven EMS mutant reporter lines affected in induction of ATNRT2.1 expression by nitrate. These lines could by divided in the following classes according to expression of other genes involved in primary nitrogen and carbon metabolism: (i) lines affected exclusively in nitrate transport, (ii) those affected in nitrate transport, acquisition, but also in glycolysis and oxidative pentose pathway, (iii) mutants affected moderately in nitrate transport, oxidative pentose pathway and glycolysis but not in primary nitrate assimilation. Thus, several different N-regulatory genes may have been mutated in this set of mutants. Map-based cloning has begun to identify the genes affected in these mutants. / Stickstoff ist einer der wichtigsten Makroelemente in der Natur und sein eingeschränktes Vorkommen ist häufig ein limitierender Faktor für pflanzliches Wachstum. In der Landwirtschaft eingesetzte Stickstoff-Dünger werden häufig nicht vollständig von Getreide- oder anderen kultivierten Pflanzen genutzt, sondern in die umliegenden Gewässer oder das Grundwasser ausgewaschen. Das Verständnis von pflanzlichen Signalprozessen kann helfen, Stickstoffaufnahme und -assimilation zu kontrollieren und somit den Einsatz von stickstoffhaltigen Düngemitteln in der Landwirtschaft zu reduzieren.<br><br>
Die meisten der in den pflanzlichen Stickstoffstoffwechsel involvierten Gene werden auf Transkriptionsebene reguliert. Dies geschieht durch sogenannte Transkriptionsfaktoren (TFs), Proteine, die von Genen anderer Genfamilien kodiert werden. Im Rahmen dieser Promotion wurde eine einzigartige und neue Ressource zur Quantifizierung der Expressionsniveaus solcher Transkriptionsfaktoren der Modellpflanze <i>Arabidopsis thaliana</i> entwickelt und getestet. Dabei konnte die beispiellose Robustheit, Genauigkeit und Präzision dieser PCR-basierten Methode gezeigt werden. Mit Hilfe dieses experimentellen Aufbaus wurden Transkriptionsfaktoren, potentielle Regulatoren von Genen, die in Stickstoffmetabolismus involviert sind, identifiziert und charakterisiert. Um die Funktionsweise dieser Gene besser zu verstehen, wurden transgene Pflanzen erzeugt und identifiziert, die entweder erhöhte oder chemisch induzierbare Transkription und/oder einen partiellen oder vollständigen Verlust der Aktivität dieser Gene aufweisen. Die Analyse der Transkriptionsfaktoren, die unter die Kontrolle eines induzierbaren Promoters gestellt wurden, soll helfen, die genauen Zielgene dieser TFs zu identifizieren und ihre Rolle im Stickstoffmetabolismus zu erklären. Darüber hinaus bieten sie die Chance, Hierarchieebenen innerhalb der verschiedenen TFs zu erkennen. Überexpression von Transkriptionsfaktoren kann zur Generierung von Phänotypen führen, die von direktem biotechnologischen Interesse sind, wie z.B. Pflanzen mit erhöhtem Stickstoffgehalt (Aminosäuregehalt), die besser an Situationen mit Stickstoffmangel angepasst sind. Neben diesen Transkriptionsfaktoren wurden allerdings auch Mutanten mit einem genetischen Defekt in einem der wichtigsten Gene, das für den Nitrattransport in Wurzeln von <i>Arabidopsis</i> verantwortlich ist, identifiziert.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:544 |
Date | January 2005 |
Creators | Czechowski, Tomasz |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0019 seconds