Return to search

The effect of teacher questioning and the "questioning-exploration-experience" learning method on early scientific thinking

The “Questioning-Exploration-Experience” (QEE), a teaching and learning method underpinned by constructivist theory, was developed by Cheng and further refined by Cheng and Chan in 2001. This thesis documents and evaluates the effectiveness of five- to six-year-old children’s learning when a teacher used this method to promote children’s understanding of the concept of (air) motion. The evaluation was conducted in a preschool operated by a tertiary institution in Hong Kong, and a teacher who was experienced in using the QEE method and her 14 students participated in the study. They were observed for six days over a period of one month when children were working on a task of making a wind bell.



Under the QEE method, the children began the inquiry process by posing questions about constructing the wind bell. They then formulated hypotheses, tested them through exploration, and refined their questions repeatedly. The children reflected on their learning experiences in order to generate new questions. Teacher questioning was also a critical aspect of this process. The children and teacher spent a total of 323 minutes on the task and the sessions were videotaped. There was a total of 2,927 utterances in 863 conversational turns, and these were analyzed to examine the relationship between the levels of teacher questioning and the children’s responses to reflect the levels of children thinking. There were five of these levels identified. The first three are considered to involve lower-order thinking: level 1 ("yes/no"); level 2 ("what"); and level 3 (“elaborate") questions and responses. The next two can be considered as higher-order thinking: level 4 (“logical”) and level 5 ("critical") questions and responses. The results indicated that the teacher dominated the interactions and spoke 43% of the time, while children spoke for the remaining time (57%). Of the 139 minutes during which the teacher talked, she spent 97 minutes (70% of the time) posing 887 questions: level 1 was used the most often accounting for 41% of the interactions, followed by level 5 (17%), level 2 (16%), level 3 (14%), and level 4 (12%). The total time for which the children spoke was 184 minutes with 1653 responses. Children gave level 3 responses (28%) most frequently, followed by levels 2 (27%), 1 (26%), 5 (12%), and 4 (7 %), respectively.



The relationship between the teacher’s questions and children’s responses was analyzed. An exact correspondence between the level of teacher thinking and children’s responses occurred 46% of the time (398 turns). Simply put, when the teacher asked a question requiring a “what” response, the child typically gave “what” information. Within the 398 turns, 41% of this direct correspondence occurred at level 1, followed by 20% at level 2, 17% at level 5, 13% at level 3, and 9% at level 4. The greatest number of correspondences occurred with questions that required “yes/no” responses, and the least with “logical” questions.



In the QEE inquiry process, the teacher’s questioning had a strong influence on the children’s scientific thinking and played a critical role in promoting children’s knowledge construction. The teacher used questioning to define an area of inquiry, specify a problem to be solved, lead children to test hypotheses, evaluate their results and determine their understanding at various points during the process. Questioning, by both the teacher and the children, was critical in promoting the children’s scientific understanding.



The impact of QEE in fostering conceptual change in knowledge construction was traced along three paths. The first path in the questioning defined the central question of inquiry. The second path, exploration, was concerned with identifying the information needed to solve the problem. The third path, experience, involved restructuring the concepts of the central question to apply the new understanding in a new situation.



Findings also suggest that children’s knowledge construction is signified by the achievement of four elements: identification of a central question for inquiry, evaluation of the question about learning, provision of ways in which to answer the question, and critical reasoning. / published_or_final_version / Education / Doctoral / Doctor of Education

  1. 10.5353/th_b4705543
  2. b4705543
Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/146099
Date January 2011
CreatorsCheng, Mei-lin., 鄭美蓮.
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
Sourcehttp://hub.hku.hk/bib/B47055431
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.002 seconds