A unique methodology for forecasting weather based on geocentric planetary alignments originated in ancient Mesopotamia. The method, called astrometeorology, was further developed by Greek, Arab, and Renaissance scientists including Ptolemy, Al-Kindi, Tycho Brahe and Joannes Kepler. A major 17th century effort to test the method in a Baconian fashion was made by John Goad. Building on the ideas of Kepler and Goad, I test an isolated component of the method, specifically a correlation between geocentric Sun-Saturn alignments and cold temperatures, using modern daily temperature data from New England, Central England, Prague and other locations. My hypothesis states there is a correlation, shown in daily temperature records, between cooling trends in specific regions and the geocentric alignments of the Sun and the planet Saturn. The hypothesis is supported by a number of tests that show lower temperatures on days when Sun-Saturn alignments occur, especially when near the equinoxes. The astronomy of this positioning suggests that tidal forces on the atmosphere may be part of a mechanism that would explain the apparent effect. The abandonment of planetary weather forecasting by the intellectual elite in 16th and 17th century Europe is next organized as a history and discussion. In the final section, applications of the methodology to climate cycles is explored, particularly in regard to a 1536-year recurring cycle of outer planets and a cycle of similar length found in climate records. In addition, an account of biological processes that are structured around astronomical cycles is presented.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:dissertations-5764 |
Date | 01 January 2010 |
Creators | Scofield, Bruce |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Language | English |
Detected Language | English |
Type | text |
Source | Doctoral Dissertations Available from Proquest |
Page generated in 0.002 seconds