Return to search

Active-passive corrosion of iron-chromium-nickel alloys in hot concentrated sulphuric acid solutions

<p>In the manufacture of sulphuric acid more stringent environmental standards and operation economics have forced the industry to improve product utilization, energy efficiency and reliability. A key to improving both the thermal efficiency and reliability is the use and/or development of more corrosion resistance materials including stainless steels, especially in the parts of the plant that handle the condensed acid. Application of more corrosion resistant material requires a better understanding of the corrosion mechanism involved in concentrated H2 SO4 -H2 O (>90 wt.%) solutions. While corrosion kinetics of carbon steel, the traditional material of construction, are relatively well understood, this is much less true in the case of the cyclic active-passive corrosion of stainless steels. Models proposed to explain the cyclic active-passive corrosion involve a periodic formation of either a protective metal sulphate film or an insoluble sulphur layer. To better understand the reactivity and/or passivity of stainless steel in concentrated H2 SO4 -H2 O solutions a study employing immersion and electrochemical techniques, including rotating electrodes, was conducted in order to clarify the following: (1) The state of stainless steel passivity. (2) The conditions in which passivity is stable. (3) The role played by the major alloying elements in establishing and maintaining the passive state. The study involved evaluating the corrosion behaviour of stainless steels S30403 and S43000 along with iron, chromium and nickel in 93.5 wt.% H2 SO4 at temperatures between 25-80°C. Major discoveries of the study include: (1) A content of 17-18 wt.% chromium is sufficient to anodically passivate S43000 as the potential is made more noble. Passivity is not stable and requires anodic polarization. (2) Alloyed nickel plays an active role in improving the corrosion resistance of stainless steel. A content of 8 wt.% nickel is sufficient promote a periodic passivation of the base Fe-(17-18)wt.% Cr stainless steel under open-circuit conditions which reduces the corrosion rate by at least an order of magnitude. (3) The electrolysis of concentrated H2 SO4 -H 2 O solutions involves a potential-dependent reduction of H2 SO 4 molecules to sulphur-containing species with an oxidation state lower than six (6). The various reduction products have a significant effect on the stainless steel corrosion resistance. (4) Successful modelling of the corrosion of nickel has been accomplished by using a galvanic interaction between a noncontinuous nickel sulphide (NiS) deposit, formed in situ, and the uncovered nickel metal. (5) Successful modelling of the active-passive corrosion of S30403 has been accomplished using a galvanic interaction between NiS(Ni) and S43000.</p> / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/7441
Date04 1900
CreatorsKish, Joseph R.
ContributorsIves, M.B., Materials Science and Engineering
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0153 seconds