Return to search

Theoretical and experimental contribution to the study of exchange-spring magnets

This thesis is divided into two parts, experimental part presenting the synthesis of exchange spring magnets and theoretical part showing the magnetization dynamics of exchange spring magnets. For the synthesis, ferrite and metal alloy based magnets using mechanical milling and ultrasonic mixing are studied. This part discusses the difficulty in controlling the microstructure during synthesis. Several samples with varying volume fractions of the soft phase are synthesized. It is found that mechanical milling initiates a reaction and this leads to disintegration of the ferrite phase into its intermediate phases. Samples prepared using ultrasonic mixing however show presence of the ferrite phase up to very large volume fraction of the soft alloy phase which provides better perspective for the synthesis. Dynamics of the exchange spring system is studied theoretically using micromagnetic theory. Microwave assisted magnetization reversal are studied in the bulk bilayer exchange coupled system. We investigate the nonlinear magnetization reversal dynamics in a perpendicular exchange spring media using the Landau-Lifshitz equation. In the limit of the infinite thickness of the system, the propagation field leads the reversal of the system. The reduction of the switching field and the magnetization profile in the extended system are studied numerically. The possibility to study the dynamics analytically is discussed and an approximation where two P-modes are coupled by an interaction field is presented. The ansatz used for the interaction field is validated by comparison with the numerical results. This approach is shown to be equivalent to two exchange coupled macrospins.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01062741
Date03 July 2014
CreatorsTayade, Renuka
PublisherÉcole normale supérieure de Cachan - ENS Cachan
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0017 seconds