La prévision des crues est un exercice hydrologique complexe : les incertitudes y sont nombreuses, aussi bien dans le processus de modélisation hydrologique, dans la détermination de l'état initial du bassin versant avant le lancement de la prévision, que dans l'évolution des conditions météorologiques futures. Dans le cas des bassins versants non jaugés, où les observations de débits sont lacunaires voire absentes, ces incertitudes sont encore plus importantes, et le besoin de les réduire devient incontournable. Cette thèse s'intéresse à des méthodes simples et robustes qui peuvent apporter de l'information pertinente pour quantifier les incertitudes de prévision dans les bassins versants non jaugés. Le but est d'étudier la meilleure stratégie pour chercher l'information dans les bassins jaugés "donneurs", et pour la transférer vers le site non jaugé. Nous étudions les besoins pour mettre en place un modèle de simulation pluie-débit et pour effectuer une mise à jour du modèle de prévision en temps réel. Ces deux composantes de la prévision sont ainsi découplées dans notre approche. Cette thèse s'appuie sur une large base de données constituée d'environ 1000 bassins versants français, dont un jeu clé de 211 bassins versants qui permet la validation des approches développées. Elle s'appuie également sur une archive d'environ 4,5 années de prévisions d'ensemble de pluies, utilisées en forçage à la modélisation hydrologique journalière. La démarche adoptée consiste à intégrer les scenarios de transfert de l'information régionale disponible et les scenarios de la prévision météorologique d'ensemble dans un système de prévision orienté vers les bassins versants non jaugés. L'approche de prévision d'ensemble est ainsi généralisée à ce cas particulier de la prévision hydrologique. A travers plusieurs scénarios de débits futurs, nous cherchons à quantifier les incertitudes de prévisions dans les sites cibles non jaugés. Pour évaluer les différents scénarios des prévisions hydrologiques émis, un cadre de diagnostic d'évaluation des principales qualités d'un système de prévision d'ensemble, comprenant plusieurs critères numériques et graphiques, a été mis en place. Dans cette thèse, une attention particulière est prêtée aux attributs "fiabilité" et "précision" des prévisions. Nous proposons ainsi un nouveau critère graphique, nommé diagramme de précision d'ensemble. Ce critère permet notamment de mettre en valeur la qualité des prévisions qui ne sont pas forcément fiables, mais qui sont précises. Les résultats obtenus ont mis en évidence que la fiabilité des prévisions peut être améliorée sur un bassin versant non jaugé par l'utilisation de plusieurs jeux de paramètres issus des bassins versants voisins. Si la variabilité apportée par le voisinage géographique influe sur la dispersion des membres, et augmente ainsi la fiabilité des prévisions, la prise en compte des caractéristiques physiques, principalement de la surface des bassins versants, est apparue comme une alternative intéressante, influençant positivement aussi l'attribut précision des prévisions sur le site cible. De plus, il a été montré que la précision des prévisions d'ensemble sur le site non jaugé est améliorée par l'intermédiaire du transfert des bassins versants jaugés vers le site cible des corrections faites lors de la mise à jour sur les bassins voisins (mise à jour caractérisée ici par l'assimilation de la dernière observation de débit dans le modèle hydrologique, avant l'instant de prévision). Les différentes mesures de performance ont montré que la meilleure option pour améliorer la précision des prévisions serait de considérer les corrections effectuées sur le bassin le plus proche à chaque pas de temps de prévision. Le krigeage a également donné des résultats satisfaisants, marqués en plus par l'influence positive sur l'attribut fiabilité des prévisions.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00954967 |
Date | 19 December 2012 |
Creators | Randrianasolo, Rindra Annie |
Publisher | AgroParisTech |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds