Return to search

Estimação em modelos funcionais com erro normais e repetições não balanceadas / Estimation in functional models by using a normal error and replications unbalanced

Esta dissertação compreende um estudo da eficiência de estimadores dos parâmetros no modelo funcional com erro nas variáveis, com repetições para contornar o problema de falta de identificação. Nela, discute-se os procedimentos baseados nos métodos de máxima verossimilhança e escore corrigido. As estimativas obtidas pelos dois métodos levam a resultados similares. / This work is concerned with a study on the efficiency of parameter estimates in the functional linear relashionship with constant variances. Where the lack of identification is resolved of by considering replications. Estimation is dealt with by using maximum likelihood and the corrected score approach. Comparisons between the approaches are illustrated by using simulated data.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19022013-171605
Date29 April 2008
CreatorsJoan Neylo da Cruz Rodriguez
ContributorsHeleno Bolfarine, Victor Hugo Lachos Davila, Monica Carneiro Sandoval
PublisherUniversidade de São Paulo, Estatística, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds