Esta dissertação compreende um estudo da eficiência de estimadores dos parâmetros no modelo funcional com erro nas variáveis, com repetições para contornar o problema de falta de identificação. Nela, discute-se os procedimentos baseados nos métodos de máxima verossimilhança e escore corrigido. As estimativas obtidas pelos dois métodos levam a resultados similares. / This work is concerned with a study on the efficiency of parameter estimates in the functional linear relashionship with constant variances. Where the lack of identification is resolved of by considering replications. Estimation is dealt with by using maximum likelihood and the corrected score approach. Comparisons between the approaches are illustrated by using simulated data.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19022013-171605 |
Date | 29 April 2008 |
Creators | Joan Neylo da Cruz Rodriguez |
Contributors | Heleno Bolfarine, Victor Hugo Lachos Davila, Monica Carneiro Sandoval |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds