Return to search

The evolution and regulation of the chordate ParaHox cluster

The ParaHox cluster is the evolutionary sister of the Hox cluster. Like the Hox cluster, the ParaHox cluster is subject to complex regulatory phenomena such as collinearity. Despite the breakup of the ParaHox cluster within many animals, intact and collinear clusters have now been discovered within the chordate phyla in amphioxus and the vertebrates, and more recently within the hemichordates and echinoderms. The archetypal ParaHox cluster of amphioxus places it in a unique position in which to examine the regulatory mechanisms controlling ParaHox gene expression within the last common ancestor of chordates, and perhaps even the wider Deuterostomia. In this thesis, the genomic and regulatory landscape of the amphioxus ParaHox cluster is characterised in detail. New genomic and transcriptomic resources are used to better characterise the B.floridae ParaHox cluster and surrounding genomic region, and conserved non-coding regions and regulatory motifs are identified across the ParaHox cluster of three species of amphioxus. In conjunction with this, the impact of retrotransposition upon the ParaHox cluster is examined and analyses of transposable elements and the AmphiSCP1 retrogene reveal that the ParaHox cluster may be more insulated from outside influence than previously thought. Finally, the detailed analyses of a regulatory element upstream of AmphiGsx reveals conserved mechanisms regulating Gsx CNS expression within the chordates, and TCF/Lef is likely a direct regulator of AmphiGsx within the CNS. The work in this thesis makes use of new genomic and transcriptomic resources available for amphioxus to better characterise the genomic and regulatory landscape of the amphioxus ParaHox cluster, serving as a basis for the improved identification and characterisation of functional regulatory elements and conserved regulatory mechanisms. This work also highlights the potential of Ciona intestinalis as a ‘living test tube' to allow the detailed characterisation of amphioxus ParaHox regulatory elements.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:725081
Date January 2016
CreatorsGarstang, Myles Grant
ContributorsFerrier, David Ellard Keith
PublisherUniversity of St Andrews
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10023/11788

Page generated in 0.0019 seconds