Some of the outflowing ions in the plasma edge have sufficient energy to access orbits which allow them to free-stream out of the confined plasma region and be lost to the wall or divertor. The effects of this ion-orbit-loss (IOL) on the poloidal distribution of ion, energy and momentum fluxes from the plasma edge into the tokamak scrape-off layer (SOL) are analyzed for a representative DIII-D H-mode discharge. IOL yields large fluxes of particle, energy and momentum, distributed poloidally over the SOL, but predominantly into the outboard SOL, significantly changing the fluxes due to transport processes for confined ions within the edge plasma. An intrinsic co-current rotation in the edge of the plasma is produced by the preferential loss of counter-current ions
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53519 |
Date | 08 June 2015 |
Creators | Schumann, Matthew Thomas |
Contributors | Weston, Stacey M. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0021 seconds