The fragmentation of administrative boundaries is a serious problem in the analysis of social, environmental and economic data. This research focuses on the development of a coordinated approach to the design of administrative boundaries that endeavours to support accurate decision making. Around the world, administrative boundaries have been structured in an uncoordinated manner, limiting data exchange and integration between organisations. The solution proposed in this research adopts the hierarchical reorganisation of administrative boundaries to enhance data integration and data exchange within the spatial data infrastructure (SDI) framework.The SDI is an initiative intended to facilitate access to complete and consistent data sets. One of the most fundamental problems restricting the objectives of the SDI is the fragmentation of data between non-coterminous boundary systems. The majority of administrative boundaries have been constructed by individual agencies to meet individual needs. Examples of the proliferation of different boundary systems include postcodes, census-collector districts, health districts and police districts. Due to the lack of coordination between boundary systems, current technologies for analysing spatial data, such as geographic information systems (GIS), are not reaching their full potential. A review of the current literature reveals that, until now, little has been done to solve this problem.The prototype developed within this research provides a new mechanism for the design of administrative boundaries. The prototype incorporates two algorithms. These are based on HSR theory and administrative-agency constraints and are implemented within the GIS environment. Such an approach is an example of the potential that is available when we link spatial information theory with the SDI framework and disciplinary knowledge.
Identifer | oai:union.ndltd.org:ADTP/245374 |
Date | January 2003 |
Creators | Eagleson, Serryn |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Terms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access |
Page generated in 0.0013 seconds