O objetivo principal desta dissertação é mostrar um resultado obtido por Plante, o qual estabelece que: qualquer fluxo de Anosov de codimensão um sobre uma variedade diferenciável compacta M de dimensão maior do que 3 com grupo fundamental solúvel é topologicamente equivalente à suspensão de um automorfismo hiperbólico do toro. Este resultado mostra a conjectura de Verjovsky no caso que o grupo fundamental da variedade é um grupo solúvel. A prova deste resultado é baseada no celebre resultado de Schwartzman, o qual fornece um criterio para garantir a existencia de seção transversal global para um fluxo não singular / O objetivo principal desta dissertação é mostrar um resultado obtido por Plante em [12] o qual estabelece que: qualquer fluxo de Anosov de codimensão um sobre uma variedade diferenciável compacta M de dimesão maior o que 3 com grupo fundamental solúvel é topologicamente equivalente à suspensão de um automorfismo hiperbólico do toro. Este resultado mostra a conjectura de Verjovsky no caso que o grupo fundamental da variedade é um grupo solúvel. A prova deste resultado é baseada no célebre resultado de Schwartzman [15], Teorema 2.17, o qual fornece um critério para garantir a existência de seção transversal global para um fluxo não singular
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25082009-104623 |
Date | 13 July 2009 |
Creators | Renato Alejandro Tintaya Mollo |
Contributors | Carlos Alberto Maquera Apaza, Carlos Biasi, Sebastião Marcos Antunes Firmo |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0037 seconds