Return to search

Inductive measurement of narrow gaps for high precision welding of square butt joints

A recent method in aero engine production is to fabricate components from smaller pieces, rather than machining them from large castings. This has made laser beam welding popular, offering high precision with low heat input and distortion, but also high productivity. At the same time, the demand for automation of production has increased, to ensure high quality and consistent results. In turn, the need for sensors to monitor and control the laser welding process is increasing. In laser beam welding without filler material, the gap between the parts to be joined must be narrow. Optical sensors are often used to measure the gap, but with precise machining, it may become so narrow that it is difficult to detect, with the risk of welding in the wrong position. This kind of problems can cause severe welding defects, where the parts are only partially joined without any visible indication. This thesis proposes the use of an inductive sensor with coils on either side of the gap. Inducing currents into the metal, such a sensor can detect even gaps that are not visible. The new feature of the proposal is based on using the complex response of each coil separately to measure the distance and height on both sides of the gap, rather than an imbalance from the absolute voltage of each coil related to gap position. This extra information allows measurement of gap width and misalignment as well as position, and decreases the influence from gap misalignment to the position measurement. The sensor needs to be calibrated with a certain gap width and height alignment. In real use,these will vary, causing the sensor to be less accurate. Using initial estimates ofthe gap parameters from the basic sensor, a model of the response can be used to estimate the measurement error of each coil, which in turn can be used for compensation to improve the measurement of the gap properties.The properties of the new method have been examined experimentally, using a precise traverse mechanism to record single coil responses in a working range around a variable dimension gap, and then using these responses to simulate a two coil probe. In most cases errors in the measurement of weld gap position and dimensions are within 0.1 mm.The probe is designed to be mounted close to the parts to be welded, and will work in a range of about 1 mm to each side and height above the plates. This is an improvement over previous inductive sensors, that needed to be guided to the mid of the gap by a servo mechanism.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hv-10150
Date January 2016
CreatorsSvenman, Edvard
PublisherHögskolan Väst, Forskningsmiljön produktionsteknik(PTW), Trollhättan : University West
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLicentiate Thesis : University West ; 14

Page generated in 0.0019 seconds