Return to search

A simulation-based methodology for the assessment of server-based security architectures for mobile ad hoc networks (MANETs)

A Mobile Ad hoc Network (MANET) is typically a set of wireless mobile nodes enabled to communicate dynamically in a multi-hop manner without any pre-existing network infrastructure. MANETs have several unique characteristics in contrast to other typical networks, such as dynamic topology, intermittent connectivity, limited resources, and lack of physical security. Securing MANETs is a critical issue as these are vulnerable to many different attacks and failures and have no clear line of defence. To develop effective security services in MANETs, it is important to consider an appropriate trust infrastructure which is tailored to a given MANET and associated application. However, most of the proposed trust infrastructures do not to take the MANET application context into account. This may result in overly secure MANETs that incur an increase in performance and communication overheads due to possible unnecessary security measures. Designing and evaluating trust infrastructures for MANETs is very challenging. This stems from several pivotal overlapping aspects such as MANET constraints, application settings and performance. Also, there is a lack of practical approaches for assessing security in MANETs that take into account most of these aspects. Based on this, this thesis provides a methodological approach which consists of well-structured stages that allows the exploration of possible security alternatives and evaluates these alternatives against dimensions to selecting the best option. These dimensions include the operational level, security strength, performance, MANET contexts along with main security components in a form of a multidimensional security conceptual framework. The methodology describes interdependencies among these dimensions, focusing specifically on the service operational level in the network. To explore these different possibilities, the Server-based Security Architectures for MANETs (SSAM) simulation model has been created in the OMNeT++ simulation language. The thesis describes the conceptualisation, implementation, verification and validation of SSAM, as well as experimentation approaches that use SSAM to support the methodology of this thesis. In addition, three different real cases scenarios (academic, emergency and military domains) are incorporated in this study to substantiate the feasibility of the proposed methodology. The outcome of this approach provides MANET developers with a strategy along with guidelines of how to consider the appropriate security infrastructure that satisfies the settings and requirements of given MANET context.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:701925
Date January 2015
CreatorsDarwish, Salaheddin
ContributorsTaylor, S. ; Ghinea, G.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/13823

Page generated in 0.0017 seconds