Return to search

Shelf-to-slope sedimentation on the north Kaipara continental margin, northwestern North Island, New Zealand

Temperate mixed carbonate-siliciclastic sediments and authigenic minerals are the current surficial deposits at shelf and slope depths (30-1015 m water depth) on the north Kaipara continental margin (NKCM) in northern New Zealand. This is the first detailed study of these NKCM deposits which are described and mapped from the analysis of 54 surficial sediment samples collected along seven shorenormal transects and from three short piston cores. Five surficial sediment facies are defined from the textural and compositional characteristics of this sediment involving relict, modern or mixed relict-modern components. Facies 1 (siliciclastic sand) forms a modern sand prism that extends out to outer shelf depths and contains three subfacies. Subfacies 1a (quartzofeldspathic sand) is an extensive North Island volcanic and basement rock derived sand deposit that occurs at less than 100-200 m water depth across the entire NKCM. Subfacies 1b (heavy mineral sand) occurs at less than 50 m water depth along only two transects and consists of predominantly local basaltic to basaltic andesite derived heavy mineral rich (gt30%) deposits. Subfacies 1c (mica rich sand) occurs at one sample site at 300 m water depth and contains 20-30% mica grains, probably sourced from South Island schists and granites. Facies 2 (glauconitic sand) comprises medium to fine sand with over 30% and up to 95% authigenic glauconite grains occurring in areas of low sedimentation on the outer shelf and upper slope (150-400 m water depth) in central NKCM. Facies 3 (mixed bryozoan-siliciclastic sand) consists of greater than 40% bryozoan skeletal material and occurs only in the northern half of the NKCM. Facies 4 (pelletal mud) occurs on the mid shelf (100-150 m water depth) in northern NKCM and comprises muddy sediment dominated by greater than c. 30% mixed carbonatesiliciclastic pellets. Facies 5 (foraminiferal mud and sand) contains at least 30% foraminifera tests and comprises two subfacies. Subfacies 5a consists of at least 50% mud sized sediment and occurs at gt400 m water depth in southern NKCM while subfacies 5b comprises gt70% sand sized sediment and occurs at mid to outer shelf and slope depths in the northern NKCM. vi A number of environmental controls affect the composition and distribution of NKCM sediments and these include: (1) variable sediment inputs to the NKCM dominated by inshore bedload sources from the south; (2) northerly directed nearshore littoral and combined storm-current sediment transport on the beach and shelf, respectively; (3) offshore suspended sediment bypassing allowing deposition of authigenic minerals and skeletal grains; (4) exchange between the beach and shelf producing similar compositions and grain sizes at less than 150 m water depth; and (5) the episodic rise of sea level since the Last Glaciation maximum approximately 20 000 years ago which has resulted in much sediment being left stranded at greater depths than would otherwise be anticipated. Sedimentation models developed from other wave-dominated shelves generally do not appear to apply to the NKCM sediments due to their overall relative coarseness and their mosaic textural characteristics. In particular, the NKCM sediments do not show the expected fining offshore trends of most wavedominated shelf models. Consequently, sandy sediments (both siliciclastic and authigenic) are most typical with mud becoming a dominant component in southern NKCM sediments only at greater than 400 m water depth, over 350 m deeper than most models suggest, a situation accentuated by the very low mud sediment supply to the NKCM from the bordering Northland landmass.

Identiferoai:union.ndltd.org:ADTP/238280
Date January 2008
CreatorsPayne, Danielle Sarah
PublisherThe University of Waikato
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.waikato.ac.nz/library/research_commons/rc_about.shtml#copyright

Page generated in 0.0014 seconds