Simulated mirror displays have a promising prospect in applications, due to its capability for virtual visualization. In most existing mirror displays, cameras are placed on top of the displays and unable to capture the person in front of the display at the highest possible resolution. The lack of a direct frontal capture of the subject's face and the geometric error introduced by image warping techniques make realistic mirror image rendering a challenging problem. The objective of this thesis is to explore the use of a robotic camera in tracking the face of the subject in front of the display to obtain a high-quality image capture. Our system uses a Bislide system to control a camera for face capture, while using a separate color-depth camera for accurate face tracking. We construct an optical device in which a one-way mirror is used so that the robotic camera behind can capture the subject while the rendered images can be displayed by reflecting off the mirror from an overhead projector. A key challenge of the proposed system is the reduction of light due to the one-way mirror. The optimal 2D Wiener filter is selected to enhance the low contrast images captured by the camera.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ece_etds-1048 |
Date | 01 January 2014 |
Creators | Zhang, Yuqi |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Electrical and Computer Engineering |
Page generated in 0.0018 seconds