Dans ce travail nous nous intéressons à la segmentation d’image 3D. Le but est de définir un cadre permettant, étant donnée une problématique de segmentation, de développer rapidement un algorithme apportant une solution à cette problématique. Afin de ne pas être restreint à un sous ensemble des types de problématique de segmentation, ce cadre doit permettre de mettre en oeuvre efficacement les différentes méthodes et les différents critères de segmentation existants, dans le but de les combiner pour définir les nouveaux algorithmes. Ce cadre doit reposer sur un modèle de structuration d’image qui représente la topologie et la géométrie d’une partition et permet d’en extraire efficacement les informations requises. Dans ce document, les différentes méthodes de segmentation existantes sont présentées afin de définir un ensemble d’opération nécessaire à leur implémentation. Une présentation des modèles existants est faite pour en déterminer avantages et inconvénients, puis le nouveau modèle est ensuite défini. Sa mise en oeuvre complète est détaillée ainsi qu’une analyse de sa complexité en temps et en mémoire pour l’ensemble des opérations précédemment définies. Des exemples d’utilisation du modèle sur des cas concrets sont ensuite décrits, ainsi que les possibilités d’extension du modèle et d’implémentation sur architecture parallèle. / In this work we focus on 3D image segmentation. The aim consists in defining a framework which, given a segmentation problem, allows to design efficiently an algorithm solving this problem. Since this framework has to be unspecific according to the kind of segmentation problem, it has to allow an efficient implementation of most segmentation techniques and criteria, in order to combine them to define new algorithms. This framework has to rely on a structuring model both representing the topology and the geometry of the partition of an image, in order to efficiently extract required information. In this document, different segmentation techniques are presented in order to define a set of primitives required for their implementation. Existing models are presented with their advantages and drawbacks, then the new structuring model is defined. Its whole implementation including details of its memory consumption and time complexity for each primitives of the previously defined set of requirements is given. Some examples of use with real image analysis problems are described, with also possible extensions of the model and its implementation on parallel architecture.
Identifer | oai:union.ndltd.org:theses.fr/2009BOR13940 |
Date | 09 December 2009 |
Creators | Baldacci, Fabien |
Contributors | Bordeaux 1, Braquelaire, Achille |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds