Cette thèse porte sur le traitement automatique d'images couleur, et son application à la robotique dans des environnements semi-structurés d'extérieur. Nous proposons une méthode de navigation visuelle pour des robots mobiles en utilisant une caméra couleur. Les domaines d'application de ce travail se situent dans l'automatisation de machines agricoles, en vue de la navigation automatique dans un réseau de chemins (pour aller d'une ferme à un champ par exemple). Nous présentons tout d'abord une analyse des principaux travaux de recherche dans la littérature sur la navigation visuelle. Une chaîne de pré-traitement pour le rendu couleur d'images numériques mono-capteur dotées d'un filtre Bayer est présentée ; elle se base sur une étude des techniques de démosaïquage, le calibrage chromatique d'images (balance de blancs) et la correction gamma. Une méthode d'interprétation monoculaire de la scène courante permet d'extraire les régions navigables et un modèle 2D de la scène. Nous traitons de la segmentation d'une image couleur en régions, puis de la caractérisation de ces régions par des attributs de texture et de couleur, et enfin, de l'identification des diverses entités de la scène courante (chemin, herbe, arbre, ciel, champ labouré,&). Pour cela, nous exploitons deux méthodes de classification supervisée : la méthode de Support Vector Machine) (SVM) et celle des k plus proches voisins (k-PPV). Une réduction d'information redondante par une analyse en composantes indépendantes (ACI) a permis d'améliorer le taux global de reconnaissance. Dans un réseau de chemins, le robot doit reconnaître les intersections de chemins lui permettant (a) dans une phase d'apprentissage, de construire un modèle topologique du réseau dans lequel il va devoir se déplacer et (b) dans une phase de navigation, de planifier et exécuter une trajectoire topologique définie dans ce réseau. Nous proposons donc une méthode de détection et classification du chemin: ligne droite, virage gauch e, virage droite, carrefour en X, en T ou en Y. Une approche pour la représentation de la forme et de la catégorisation des contours (Shape Context) est utilisée à cet effet. Une validation a été effectuée sur une base d'images de routes ou chemins de campagne. En exploitant cette méthode pour détecter et classifier les noeuds du réseau de chemins, un modèle topologique sous forme d'un graphe est construit; la méthode est validée sur une séquence d'images de synthèse. Enfin, dans la dernière partie de la thèse, nous décrivons des résultats expérimentaux obtenus sur le démonstrateur DALA du groupe Robotique et IA du LAAS-CNRS. Le déplacement du robot est contrôlé et guidé par l'information fournie par le système de vision à travers des primitives de déplacement élémentaires (Suivi-Chemin, Suivi-Objet, Suivi-Bordure,...). Le robot se place au milieu du chemin en construisant une trajectoire à partir du contour de cette région navigable. Étant donné que le modèle sémantique de la scène est produit à basse fréquence (de 0,5 à 1Hz) par le module de vision couleur, nous avons intégré avec celui-ci, un module de suivi temporel des bords du chemin (par Snakes), pour augmenter la fréquence d'envoi des consignes (de 5 à 10 Hz) au module de locomotion. Modules de vision couleur et de suivi temporel doivent être synchronisés de sorte que le suivi puisse être réinitialisé en cas de dérive. Après chaque détection du chemin, une trajectoire sur le sol est planifiée et exécutée; les anciennes consignes qui ne sont pas encore exécutées sont fusionnées et filtrées avec les nouvelles, donnant de la stabilité au système.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00010912 |
Date | 15 February 2005 |
Creators | AVINA CERVANTES, Juan Gabriel |
Publisher | Institut National Polytechnique de Toulouse - INPT |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0605 seconds