Return to search

Méthodes variationnelles pour la segmentation d'images à partir de modèles : applications en imagerie médicale / Variational methods for model-based image segmentation - applications in medical imaging

La segmentation d’images médicales est depuis longtemps un sujet de recherche actif. Cette thèse traite des méthodes de segmentation basées modèles, qui sont un bon compromis entre généricité et capacité d’utilisation d’informations a priori sur l’organe cible. Notre but est de construire un algorithme de segmentation pouvant tirer profit d’une grande variété d’informations extérieures telles que des bases de données annotées (via l’apprentissage statistique), d’autres images du même patient (via la co-segmentation) et des interactions de l’utilisateur. Ce travail est basé sur la déformation de modèle implicite, une méthode variationnelle reposant sur une représentation implicite des formes. Après avoir amélioré sa formulation mathématique, nous montrons son potentiel sur des problèmes cliniques difficiles. Nous introduisons ensuite différentes généralisations, indépendantes mais complémentaires, visant à enrichir le modèle de forme et d’apparence utilisé. La diversité des applications cliniques traitées prouve la généricité et l’efficacité de nos contributions. / Within the wide field of medical imaging research, image segmentation is one of the earliest but still open topics. This thesis focuses on model-based segmentation methods, which achieve a good trade-off between genericity and ability to carry prior information on the target organ. Our goal is to build an efficient segmentation framework that is able to leverage all kinds of external information, i.e. annotated databases via statistical learning, other images from the patient via co-segmentation and user input via live interactions. This work is based on the implicit template deformation framework, a variational method relying on an implicit representation of shapes. After improving the mathematical formulation of this approach, we show its potential on challenging clinical problems. Then, we introduce different generalizations, all independent but complementary, aimed at enriching both the shape and appearance model exploited. The diversity of the clinical applications addressed shows the genericity and the effectiveness of our contributions.

Identiferoai:union.ndltd.org:theses.fr/2013PA090029
Date21 October 2013
CreatorsPrevost, Raphaël
ContributorsParis 9, Cohen, Laurent David
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds