Neuroanatomical data in fly brain research are mostly available as spatial gene expression patterns of genetically distinct fly strains. The Drosophila standard brain, which was developed in the past to provide a reference coordinate system, can be used to integrate these data. Working with the standard brain requires advanced image processing methods, including visualisation, segmentation and registration. The previously published VIB Protocol addressed the problem of image registration. Unfortunately, its usage was severely limited by the necessity of manually labelling a predefined set of neuropils in the brain images at hand. In this work I present novel tools to facilitate the work with the Drosophila standard brain. These tools are integrated in a well-known open-source image processing framework which can potentially serve as a common platform for image analysis in the neuroanatomical research community: ImageJ. In particular, a hardware-accelerated 3D visualisation framework was developed for ImageJ which extends its limited 3D visualisation capabilities. It is used for the development of a novel semi-automatic segmentation method, which implements automatic surface growing based on user-provided seed points. Template surfaces, incorporated with a modified variant of an active surface model, complement the segmentation. An automatic nonrigid warping algorithm is applied, based on point correspondences established through the extracted surfaces. Finally, I show how the individual steps can be fully automated, and demonstrate its application for the successful registration of fly brain images. The new tools are freely available as ImageJ plugins. I compare the results obtained by the introduced methods with the output of the VIB Protocol and conclude that our methods reduce the required effort five to ten fold. Furthermore, reproducibility and accuracy are enhanced using the proposed tools. / Expressionsmuster genetisch manipulierter Fliegenstämme machen den Großteil neuroanatomischer Daten aus, wie sie in der Gehirnforschung der Taufliege Drosophila melanogaster entstehen. Das Drosophila Standardgehirn wurde u.a. entwickelt, um die Integration dieser Daten in ein einheitliches Referenz-Koordinatensystem zu ermöglichen. Die Arbeit mit dem Standardgehirn erfordert hochentwickelte Bildverarbeitungsmethoden, u.a. zur 3D Visualisierung, Segmentierung und Registrierung. Das bereits publizierte "VIB Protocol" stellte bisher eine Möglichkeit für die Registrierung zur Verfügung, die aber duch die Notwendigkeit manueller Segmentierung bestimmter Neuropile nur eingeschränkt verwendbar war. In der vorliegenden Arbeit stelle ich neue Werkzeuge vor, die den Umgang mit dem Standardgehirn erleichtern. Sie sind in ein bekanntes, offenes Bildverarbeitungsprogramm integriert, das potentiell als Standardsoftware in der neuroanatomischen Forschung dienen kann: ImageJ. Im Zuge dieser Arbeit wurde eine hardwarebeschleunigte 3D Visualisierungs-Bibliothek entwickelt, die die Visualisierungsmöglichkeiten von ImageJ ergänzt. Auf Basis dieser Entwicklung wurde anschließend ein neuer halbautomatischer Segmentierungs-Algorithmus erstellt. In diesem Algorithmus werden Neuropil-Oberflächen, ausgehend von ausgewählten Ausgangspunkten, aufgebaut und erweitert. Vorlagen von Neuropil-Oberflächen aus der Segmentierung eines Referenz-Datensatzes, die anhand eines modifizierten "Active Surface" Modells einbezogen werden können, ergänzen die aktuelle Segmentierung. Die so erhaltenen Oberflächen ermöglichen es, korrespondierende Landmarken in den Bildern zu ermitteln, die für eine nicht-rigide Registrierung verwendet werden. Schließlich wird dargelegt, wie die einzelnen Schritte voll automatisiert werden können, um die Bilder der Fliegengehirne aufeinander abzubilden. Die vorgestellten Methoden sind frei als Erweiterungen für ImageJ verfügbar (Plugins). Ein direkter Vergleich mit dem VIB Protokoll zeigt, dass durch die vorgestellten Methoden nicht nur der Benutzeraufwand auf ein Sechstel reduziert, sondern dass gleichzeitig auch die Genauigkeit und Reproduzierbarkeit erhöht wird.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:4275 |
Date | January 2010 |
Creators | Schmid, Benjamin |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds