Return to search

Analysis Of Seismic Behavior Of Underground Structures: A Case Study On Bolu Tunnels

In today&rsquo / s world, buried structures are used for a variety of purposes in many areas such as transportation, underground depot areas, metro stations and water transportation. The serviceability of these structures is crucial in many cases following an earthquake / that is, the earthquake should not impose such damage leading to the loss of serviceability of the structure. The seismic design methodology utilized for these structures differs in many ways from the above ground structures. The most commonly utilized approach in dynamic analysis of underground structures is to neglect the inertial forces of the substructures since these forces are relatively insignificant contrary to the case of surface structures. In seismic design of these underground structures, different approaches are utilized like free-field deformation approach and soil-structure interaction approach.
Within the confines of this thesis, seismic response of highway tunnels is considered through a case study on Bolu Tunnels, which are well documented and subjected to D&uuml / zce earthquake. In the analyses, the seismic response of a section of the Bolu tunnels is examined with 2-D finite element models and results are compared with the recorded data to evaluate the capability of the available analysis methods. In general, the results of analyses did not show any distinct difference from the recorded data regarding the seismic performance of the analyzed section and that the liner capacities were sufficient, which is consistent with the post earthquake condition of the Bolu Tunnels.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612735/index.pdf
Date01 December 2010
CreatorsErtugrul, Niyazi
ContributorsBakir, Sadik Bahadir
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0269 seconds