Return to search

Approximation par éléments finis de problèmes d'Helmholtz pour la propagation d'ondes sismiques / Finite element approximation of Helmholtz problems with application to seismic wave propagation

Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée par l'équation d'Helmholtz. Les méthodes numériques permettant de résoudre ce problème souffrent de dispersion numérique, en particulier à haute fréquence. Ce phénomène, appelé "effet de pollution", est largement analysé dans la littérature quand le milieu de propagation est homogène et l'utilisation de "méthodes d'ordre élevé" est souvent proposée pour minimiser ce problème. Dans ce travail, on s'intéresse à un milieu de propagation hétérogène, cas pour lequel on dispose de moins de connaissances. On propose d'adapter des méthodes éléments finis d'ordre élevé pour résoudre l'équation d'Helmholtz en milieu hétérogène, afin de réduire l'effet de pollution. Les méthodes d'ordre élevé étant généralement basées sur des maillages "larges", une stratégie multi-échelle originale est développée afin de prendre en compte des hétérogénéités de petite échelle. La convergence de la méthode est démontrée. En particulier, on montre que la méthode est robuste vis-a-vis de l'effet de pollution. D'autre part, on applique la méthode a plusieurs cas-tests numériques. On s'intéresse d'abord à des problèmes académiques, qui permettent de valider la théorie de convergence développée. On considère ensuite des cas-tests "industriels" appliqués à la Géophysique. Ces derniers nous permettent de conclure que la méthode multi-échelle proposée est plus performante que les éléments finis "classiques" et que des problèmes 3D réalistes peuvent être considérés. / The main objective of this work is the design of an efficient numerical strategy to solve the Helmholtz equation in highly heterogeneous media. We propose a methodology based on coarse meshes and high order polynomials together with a special quadrature scheme to take into account fine scale heterogeneities. The idea behind this choice is that high order polynomials are known to be robust with respect to the pollution effect and therefore, efficient to solve wave problems in homogeneous media. In this work, we are able to extend so-called "asymptotic error-estimate" derived for problems homogeneous media to the case of heterogeneous media. These results are of particular interest because they show that high order polynomials bring more robustness with respect to the pollution effect even if the solution is not regular, because of the fine scale heterogeneities. We propose special quadrature schemes to take int account fine scale heterogeneities. These schemes can also be seen as an approximation of the medium parameters. If we denote by h the finite-element mesh step and by e the approximation level of the medium parameters, we are able to show a convergence theorem which is explicit in terms of h, e and f, where f is the frequency. The main theoretical results are further validated through numerical experiments. 2D and 3D geophysica benchmarks have been considered. First, these experiments confirm that high-order finite-elements are more efficient to approximate the solution if they are coupled with our multiscale strategy. This is in agreement with our results about the pollution effect. Furthermore, we have carried out benchmarks in terms of computational time and memory requirements for 3D problems. We conclude that our multiscale methodology is able to greatly reduce the computational burden compared to the standard finite-element method

Identiferoai:union.ndltd.org:theses.fr/2015ISAM0011
Date11 December 2015
CreatorsChaumont Frelet, Théophile
ContributorsRouen, INSA, Gout, Christian, Barucq, Hélène
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0042 seconds