Before raw seismic data records are interpretable by geologists, geophysicists must process these data using a technique called migration. Migration spatially repositions the acoustic energy in a seismic record to its correct location in the subsurface. Traditional migration techniques used a transpose approximation to a true acoustic propagation operator. Conventional least squares migration uses a true inverse operator, but is limited in functionality by the large size of modern seismic datasets. This research uses a new technique, called stabilized least squares migration, to correctly migrate seismic data records using a true inverse operator. Contrary to conventional least squares migration, this new technique allows for errors over ten percent in the underlying subsurface velocity model, which is a large limitation in conventional least squares migration. The stabilized least squares migration also decreases the number of iterations required by conventional least squares migration algorithms by an average of about three iterations on the sample data tested in this research.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3141 |
Date | 18 December 2015 |
Creators | Ganssle, Graham |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0015 seconds