Return to search

The Regulation of Brain Serotonergic and Dopaminergic Neurons: The Modulatory Effects of Selective Serotonin Reuptake Inhibitors, Atypical Neuroleptics and Environmental Enrichment

<p>The brain serotonergic and dopaminergic systems broadly influence our internal experience and the ways in which we interact with the outside environment, with crucial regulatory roles in mood, sleep, appetite and the control of voluntary movement. Serotonin and dopamine neurons are themselves influenced by a wide variety of internal and external factors, many of which remain poorly understood. The central aim of this thesis was to better characterize several of these modulatory influences via exploratory investigations involving pharmaceutical agents or environmental modification. Specifically, I examined the modulatory effects of selective serotonin reuptake inhibitors (SSRIs), atypical neuroleptics and environmental enrichment with exercise on the regulation of brain serotonin and dopamine neurons.</p> <p>This thesis documents, for the first time, that (1) inhibition of the serotonin transporter (SERT) by SSRIs induces a rapid and region-selective reduction of tryptophan hydroxylase (TPH)-immunoreactive neurons in serotonergic brainstem nuclei that persists over a prolonged treatment course; that (2) selective blockade of SERT by SSRIs can rapidly induce a reduction of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra (SN) and the ventral tegmental area (VTA) that, again, persists over a lengthy treatment course; that (3) environmental enrichment with exercise can potentiate the effect of SERT inhibition on SN dopaminergic neurons, but not the dorsal raphe nucleus (DRN) serotonergic neurons; that (4) that SSRI fluoxetine triggers a significant upregulation of microglia in the SN; that (5) environmental enrichment with exercise can reduce TPH immunoreactivity in the DRN and TH immunoreactivity in the SN and VTA, even in the absence of any pharmacological intervention, and finally, that (6) the atypical neuroleptic risperidone significantly reduces TPH in the DRN of both young and aged animals and reduces DRN Nissl counts in aged animals. Taken together, the body of work included in this thesis suggests that SSRIs, atypical neuroleptics and environmental enrichment with exercise can have profound effects on brain serotonergic and dopaminergic neurons, possibly accounting for some of the side effects and therapeutic benefits associated with these interventions.</p> / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/11953
Date04 1900
CreatorsMacGillivray, Lindsey E.S.
ContributorsMazurek, Michael F., Rosebush, Patricia I., Szechtman, Henry, Medical Sciences (Neuroscience and Behavioral Science)
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0099 seconds