This Dissertation describes the development of chemical looping for selective oxidations. Chemical looping is a reactor technology that achieves simultaneous reaction and separation. For a large subset of reactions (viz. abstraction or insertion of oxygen), this technology is based upon the use of oxygen carriers. These materials, typically metal oxides, reversibly store and release oxygen, and there is growing interest in using these materials for selective oxidations. This Dissertation describes work on the development of oxygen carriers for selective oxidations, including foundational work on a method for analysing periodic non-catalytic gas-solid reactions, of which chemical looping selective oxidations are a subset. The oxygen chemical potential of Ca2Fe2O5 was exploited to improve the efficiency of the steam-iron process to produce hydrogen. The ability of reduced Ca2Fe2O5 to convert a higher fraction of steam to hydrogen than chemically unmodified Fe was demonstrated in a packed bed. This demonstrates how the oxygen chemical potential might be manipulated and exploited for chemical looping reactions. The oxygen chemical potential determines the selectivity in thermodynamically-controlled selective oxidations, and, depending on the reaction mechanism, kinetically-controlled selective oxidations. A generic method for enhancing the oxygen-carrying capacity of oxygen carriers for use in selective oxidations is presented, where one material that is selective in the reaction is deposited on the surface of a second material acting as a reservoir of oxygen and as a support. The presence of ceria in the support was found to supply lattice oxygen additional to that provided by the bismuth oxide, without affecting the selectivity of bismuth oxide. The surface chemistry was decoupled from the bulk properties of the support, thus simplifying the design and formulation of composite oxygen carriers. Building upon the concepts of oxygen chemical potential and composite oxygen carriers, chemical looping epoxidation was demonstrated for the first time. The oxygen carrier was composed of Ag, for its unique catalytic properties, and SrFeO3 as the support, for its high oxygen chemical potential at low temperatures. A reaction mechanism was proposed based on the observations. Nonlinear frequency response theory was used to analysis a periodic non-catalytic gas-solid reaction. Generalised frequency response functions (which are higher order analogues to traditional, linear transfer functions) were derived to obtain the nonlinear frequency response of the archetypal reactor. Such a method lies between the traditional frequency response theorem and numerical methods in terms of accuracy and speed. A niche application was proposed for the analysis of experimental kinetics, avoiding convolution of measurements with the response time of measuring equipment. In summary, this Dissertation describes how materials might be formulated for selective oxidations in chemical looping mode. This was demonstrated for an industrially-significant reaction for the production of ethylene. A novel application of nonlinear frequency response theory was also demonstrated for chemical looping reactions.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:767911 |
Date | January 2019 |
Creators | Chan, Martin Siu Chun |
Contributors | Dennis, John |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.repository.cam.ac.uk/handle/1810/290408 |
Page generated in 0.0253 seconds