The phase behavior of chiral block copolymers (BCPs*), namely, BCPs with at least one of the constituent block is formed by chiral monomers, is studied both experimentally and theoretically. Specifically, the formation of a unique morphology with helical sense, the H* phase, where the chiral block forms nanohelices hexagonally embedded in the matrix of achiral block, is investigated. Such unique morphology was first observed in the cast film of polystyrene-b-poly(L-lactide) (PS-b-PLLA) from a neutral solvent dichloromethane at room temperature with all the nanohelices being left-handed, which would switch to right-handed if the PLLA block changes to PDLA. Further studies revealed that such morphology only forms when the chiral PLLA block possesses certain volume fraction (from 0.32 to 0.36), and the molecular weight exceeds certain critical value (around 20,000 to 25,000 g/mol). Achiral phases such as lamellae, gyroid, cylinder, and sphere will form if the above criteria are not satisfied. Even though the unique H* phase has been extensively studied and utilized for many applications, many fundamental and important questions remain unanswered for such BCP* system. Specifically, how does the molecular level chirality transfer from the several-angstrom scale of the lactide monomer to the tens-of-nanometer size scale of the H* domain morphology? Why is the chirality transfer not automatic for this BCP* system? Is H* phase a thermodynamic stable or metastable phase? Are there other novel phases other than the H* phase that could form within the BCP* system?
We aimed at providing answers to the abovementioned questions regarding the formation of chiral H* phase, which is no longer limited to the PS-b-PLLA/PDLA system. We divided our studies into both experimental and theoretical parts. In the experiments, we studied the effect of solvent casting conditions, including solvent removal rate and polymer-solvent interactions, on the formation of the H* phase in PS-b-PLLA/PDLA BCPs*. In addition, we monitored the morphological evolution during solvent casting using time-resolved x-ray scattering technique. We found that good solubility towards both PS and PLLA/PDLA blocks are required for the formation of the H* phase, and microphase separation has to happen prior to crystallization of chiral block. Most importantly, we found that crystalline ordering is not necessary for the H* phase formation. This result led us to propose melt-state twisted molecular packing as the underlying driving force for such helical phase to form, and began our work on the theory for BCPs*. First we built the theoretical tool by incorporating the orientational segmental interactions into the self-consistent field theory (SCFT) for BCPs. As a demonstration, we constructed the phase diagrams for one-dimensional (1D) and two-dimensional (2D) phases, for achiral BCPs with different orientational stiffness. We found that orientational stiffness could serve as another parameter to introduce asymmetry into BCP systems, in addition to conformational and architectural asymmetry. This model was further applied to study the phase behavior of BCPs*, and two phase diagrams were constructed. Another chiral phase, wavy lamellae (L* phase), was observed for BCPs*. The H* phase was found to be a thermodynamic stable phase, as long as the segregation strength ����and chiral strength ��! exceed certain critical values. Energetically favorable cholesteric texture was observed for the chiral segment packing inside the H* phase, which is believed to drive such unusual morphology to form. A simple geometrical argument based on bending of cylindrical microdomain and twisted packing of the bended microdomain can be given to explain the nonlinear chiral sensitivity of BCP* morphology, which further explains the non-automatic feature of chirality transfer in such system.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:open_access_dissertations-1722 |
Date | 01 February 2013 |
Creators | Zhao, Wei |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Open Access Dissertations |
Page generated in 0.0026 seconds