Immobilization of different bio- and organic molecules on solid supports is fundamental within many areas of science. Sometimes, it is desirable to obtain a directed orientation of the molecule in the immobilized state. In this thesis, the copper (I) catalyzed Huisgen 1,3-dipolar cycloaddition, referred to as a “click chemistry” reaction, was explored as a means to perform directed immobilization of small molecule ligands on gold surfaces. The aim was to synthesize alkyne- and azide-terminated alkanethiols that would form well-organized self assembled monolayers (SAMs) on gold from the commercially available substances orthoethylene glycol and bromo alkanoic acid. N-(23-azido-3,6,9,12,15,18,21-heptaoxatricosyl)-n-mercaptododekanamide/hexadecaneamide (n = 12, 16) were successfully synthesized and allowed to form SAMs of different compositions to study how the differences in density of the functional groups on the surface would influence the structure of the monolayer and the click chemistry reaction. The surfaces were characterized by different optical methods: ellipsometry, contact angle goniometry and infrared reflection-absorption spectroscopy (IRAS). The click reaction was found to proceed at very high yields on all investigated surfaces. Finally, the biomolecular interaction between a ligand immobilized by click chemistry on the gold surfaces and a model protein (bovine carbonic anhydrase) was demonstrated by surface plasmon resonance using a Biacore system.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-20559 |
Date | January 2009 |
Creators | Okabayashi, Yohei |
Publisher | Linköpings universitet, Institutionen för fysik, kemi och biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds