Made available in DSpace on 2016-06-02T20:06:03Z (GMT). No. of bitstreams: 1
2596.pdf: 1631367 bytes, checksum: 90f2d842a935f1dd50bf587a33f6a2cb (MD5)
Previous issue date: 2009-02-16 / The clustering techniques have frequently been used in literature to the analyse data in several fields of application. The main objective of this work is to study such techniques. There is a large number of clustering techniques in literature. In this work we concentrate on Self Organizing Map (SOM), k-means, k-medoids and Expectation- Maximization (EM) algorithms. These algorithms are applied to gene expression data. The analisys of gene expression, among other possibilities, identifies which genes are differently expressed in synthesis of proteins associated to normal and sick tissues. The purpose is to do a comparing of these metods, sticking out advantages and disadvantages of such. The metods were tested for simulation and after we apply them to a real data set. / As técnicas de agrupamento (clustering) vêm sendo utilizadas com freqüência na literatura para a solução de vários problemas de aplicações práticas em diversas áreas do conhecimento. O principal objetivo deste trabalho é estudar tais técnicas. Mais especificamente, estudamos os algoritmos Self Organizing Map (SOM), k-means, k-medoids, Expectation-Maximization (EM). Estes algoritmos foram aplicados a dados de expressão gênica. A análise de expressão gênica visa, entre outras possibilidades, a identificação de quais genes estão diferentemente expressos na sintetização de proteínas associados a tecidos normais e doentes. O objetivo deste trabalho é comparar estes métodos no que se refere à eficiência dos mesmos na identificação de grupos de elementos similares, ressaltando vantagens e desvantagens de cada um. Os métodos foram testados por simulação e depois aplicamos as metodologias a um conjunto de dados reais.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4537 |
Date | 16 February 2009 |
Creators | Rodrigues, Fabiene Silva |
Contributors | Milan, Luis Aparecido |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds