Yes / This paper presents an experimental study into the axial compressive behaviour of self-compacting concrete filled elliptical steel tube columns. In total, ten specimens, including two empty columns, with various lengths, section sizes and concrete strengths were tested to failure. The experimental results indicated that the failure modes of the self-compacting concrete filled elliptical steel tube columns with large slenderness ratio were dominated by global buckling. Furthermore, the composite columns possessed higher critical axial compressive capacities compared with their hollow section companions due to the composite interaction. However, due to the large slenderness ratio of the test specimens, the change of compressive strength of concrete core did not show significant effect on the critical axial compressive capacity of concrete filled columns although the axial compressive capacity increased with the concrete grade increase. The comparison between the axial compressive load capacities obtained from experimental study and prediction using simple methods provided in Eurocode 4 for concrete-filled steel circular tube columns showed a reasonable agreement. The experimental results, analysis and comparison presented in this paper clearly support the application of self-compacting concrete filled elliptical steel tube columns in construction engineering practice.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/10317 |
Date | 24 October 2016 |
Creators | Mahgub, Munir, Ashour, Ashraf, Lam, Dennis, Dai, Xianghe |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, Accepted manuscript |
Rights | © 2016 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/, CC-BY-NC-ND |
Page generated in 0.0025 seconds