Return to search

A theoretical study of creep deformation mechanisms of Type 316H stainless steel at elevated temperatures

The currently operating Generation II Advanced Gas-Cooled Reactors (AGR) in the nuclear power stations in the UK, mainly built in the 1960s and 1970s, are approaching their designed life. Besides the development of the new generation of reactors, the government is also seeking to extend the life of some AGRs. Creep and failure properties of Type 316H austenitic stainless steels used in some components of AGR at elevated temperature are under investigation in EDF Energy Ltd. However, the current empirical creep models used and examined in EDF Energy have deficiency and demonstrate poor agreement with the experimental data in the operational complex thermal/mechanical conditions. The overall objective of the present research is to improve our general understanding of the creep behaviour of Type 316H stainless steels under various conditions by undertaking theoretical studies and developing a physically based multiscale state variable model taking into account the evolution of different microstructural elements and a range of different internal mechanisms in order to make realistic life prediction. A detailed review shows that different microstructural elements are responsible for the internal deformation mechanisms for engineering alloys such as 316H stainless steels. These include the strengthening effects, associated with forest dislocation junctions, solute atoms and precipitates, and softening effects, associated with recovery of dislocation structure and coarsening of precipitates. All the mechanisms involve interactions between dislocations and different types of obstacles. Thus change in the microstructural state will lead to the change in materials' internal state and influence the mechanical/creep property. Based on these understandings, a multiscale self-consistent model for a polycrystalline material is established, consisting of continuum, crystal plasticity framework and dislocation link length model that allows the detailed dislocation distribution structure and its evolution during deformation to be incorporated. The model captures the interaction between individual slip planes (self- and latent hardening) and between individual grains and the surrounding matrix (plastic mismatch, leading to the residual stress). The state variables associated with all the microstructure elements are identified as the mean spacing between each type of obstacles. The evolution of these state variables are described in a number of physical processes, including the dislocation multiplication and climb-controlled network coarsening and the phase transformation (nucleation, growth and coarsening of different phases). The enhancements to the deformation kinetics at elevated temperature are also presented. Further, several simulations are carried out to validate the established model and further evaluate and interpret various available data measured for 316H stainless steels. Specimens are divided into two groups, respectively ex-service plus laboratory aged (EXLA) with a considerable population of precipitates and solution treated (ST) where precipitates are not present. For the EXLA specimens, the model is used to evaluate the microscopic lattice response, either parallel or perpendicular to the loading direction, subjected to uniaxial tensile and/or compressive loading at ambient temperature, and macroscopic Bauschinger effect, taking into account the effect of pre-loading and pre-crept history. For the ST specimens, the model is used to evaluate the phase transformation in the specimen head volume subjected to pure thermal ageing, and multiple secondary stages observed during uniaxial tensile creep in the specimen gauge volume at various temperatures and stresses. The results and analysis in this thesis improve the fundamental understanding of the relationship between the evolution of microstructure and the creep behaviour of the material. They are also beneficial to the assessment of materials' internal state and further investigation of deformation mechanism for a broader range of temperature and stress.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:664836
Date January 2015
CreatorsHu, Jianan
ContributorsCocks, Alan C. F.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:d956b7ff-9748-408e-a68f-31d4c1d492b5

Page generated in 0.0018 seconds