Return to search

Développement d'algorithme temps réel pour capteur optique de vélocimétrie. Application à la mesure de vitesse de micro-canaux fluidiques

Les mesures de vitesse sans contact des cibles mobiles comme les structures mécaniques sont souvent utilisés dans diverses applications industrielles pour le contrôle non destructif et le contrôle qualité. En outre, les processus de mesure de vitesse peuvent devenir cruciaux si elle est l'un des paramètres qui régissent la sécurité et la performance d'un système comme dans le transport. La mesure précise et sans contact de vitesse de fluide circulant dans des micro-canaux est un enjeu majeur pour l'industrie chimique fabriquant des produits pharmaceutiques. En médecine, la connaissance de la vitesse du flux sanguin dans les vaisseaux peut permettre d'anticiper sur des maladies cardiovasculaires. De telles mesures sans contact peuvent être réalisées par ultrasons ou par micro-ondes mais ces deux méthodes ont une résolution spatiale relativement faible. D'autre part, les capteurs optiques usuels sont souvent de coût élevé. Par exemple, la vélocimétrie laser Doppler conventionnelle (ou LDV pour Laser Doppler Velocimetry) est une technique de haute précision pour des mesures de vitesse, mais l'utilisation d'un grand nombre de composants optiques implique un prix élevé. L'interférométrie à rétroinjection optique est une solution attrayante qui nous permet de concevoir des capteurs laser à faible coût présentant une bonne précision. Disposant de capteurs optiques sans contact utilisant juste une diode Laser soumise à la rétroinjection optique pour venir mesurer des vitesses, l'objectif de cette thèse est de développer des dispositifs adaptés à ce type de mesure et opérant en temps réel. En interférométrie à rétroinjection optique (ou OFI pour Optical Feedback Interferometry), couramment appelée self-mixing, une interférence se produit dans la cavité active du laser entre le champ existant dans la cavité et celui rétrodiffusé par une cible extérieure située en face de la diode laser induisant des variations de la puissance optique de sortie dues notamment à l'effet Doppler. Par mesure de la fréquence Doppler de la puissance optique, la vitesse de la cible peut être déterminée. Dans cette thèse, nous étudions les principales techniques de traitement du signal permettant d'offrir en temps réel des mesures de fréquence Doppler de précision acceptable. La première technique est basée sur une analyse spectrale classique et requiert le calcul d'une transformée de Fourier rapide (FFT). Cette technique est robuste mais nécessite un matériel électronique complexe et coûteux en ressources pour le traitement du signal en temps réel. La seconde est basée sur une modélisation autorégressive d'ordre 2 (AR2) du signal de self-mixing par un filtre de prédiction linéaire. La fréquence Doppler correspond à la fréquence de résonnance de ce filtre. Cette technique est plus précise, plus rapide et moins gourmande en ressources que la FFT. Par contre, elle présente un risque de divergence et nécessite un calibrage au démarrage. La troisième est une technique originale de traitement du signal temps-réel qui a permis d'améliorer les performances du capteur en termes de gamme de vitesses mesurables. Cette technique n'est pas gourmande en ressources comme la FFT et ne nécessite pas de calibrage comme l'AR2. Cette technique a été implémentée et validée expérimentalement en configurations réelles. Elle a permis de fournir des mesures de bonne précision, comparable à celle de la FFT. Nous appliquons ensuite ces méthodes de traitement du signal sur des signaux de self-mixing issus du passage de particules portées par un liquide dans le faisceau de la diode laser utilisée. En fait, dans ce cas, le signal de self-mixing ne présente plus un pic Doppler mais une distribution de fréquences Doppler car les particules traversant le faisceau sont de vitesses différentes allant de zéro au bord du canal jusqu'une valeur maximale au centre. Un autre phénomène qui peut contribuer à l'élargissement spectral est la diffusion multiple des particules. L'AR2 et la technique développée ont permis d'obtenir des mesures fiables de la vitesse d'écoulement fluidique dans un canal à l'échelle microscopique. D'autre part, nous étudions les configurations optiques du dispositif de mesure. Nous montrons que le dispositif employant une seule diode laser est sensible aux variations d'angle d'incidence avec la cible. Cet angle doit être connu pour calculer la vitesse. Nous proposons ensuite un dispositif employant deux diodes laser et nous montrons sa robustesse face aux variations d'angles d'incidence et sa capacité de calculer la vitesse de la cible sans connaitre les angles d'incidence. Nous analysons ce dispositif afin de déterminer la configuration optimale permettant de garantir les meilleures performances. Des simulations et des résultats expérimentaux permettent de valider les performances de ce dispositif en termes de précision et de robustesse. Enfin, nous appliquons ce dispositif à double-tête laser et la technique de traitement développée dans cette thèse pour mesurer la vitesse d'écoulement d'un liquide injecté dans un canal macroscopique par une pompe péristaltique à débit non continu. Cette thèse a donc permis de développer un capteur optique robuste à faible coût permettant de mesurer la vitesse en temps-réel en utilisant la rétroinjection optique.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01068342
Date18 March 2014
CreatorsTanios, Bendy
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0877 seconds